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Hydrodynamical N-body simulations are 
essential in astrophysics since they 
provide tests for theories of galaxy 
formation and evolution.

High spatial resolutions are need to get 
a deeper understanding of galaxy 
physics.

Context

As spatial resolution increases, computational 
demands escalate dramatically

Addressing this challenge requires innovative solutions 
to optimize and accelerate computations.

An effective strategy involves porting hydrodynamical 
codes onto GPU architecture (RAMSES)

Challenges

Credits: 
https://www.tng-project.org/media/
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Application to RAMSES 
and MINIRAMSES

Ramses and Miniramses are written in Fortran 
programming language

Eulerian approach for solving compressible 
hydrodynamics equations

Compatible with graphics processing units 
(GPUs)

Implements adaptive mesh refinement (AMR) 
for resolving structures on different scales

MINIRAMSES is a novel version of Ramses with a more 
efficient grid memory management system that 
facilitates memory access and significantly improves the 
chances of an efficient GPU porting of the code



Identification of Oct Cell:
- It identifies an individual cell within 

the oct in the computational 
domain.

Refinement Evaluation:
- It assesses if the oct cell meets the 

criteria for refinement.
- Criteria may include gas density, 

density gradient, or other physical 
properties.

Cell Refinement:
- If the oct cell meets refinement 

criteria, it is divided into smaller 
cells.

- The process increases grid 
resolution in the region of interest.

AMR 
(Adaptive Mesh Refinement) 

Introduces the new 
macrostructure: of super-oct in 
cell refinement.

ocs in super-octs are saved in 
contiguous memory locations. 
Cell adjacent in space close in 
memory

minimizes memory accessMINIRAMSES

RAMSES

Example of classical AMR working

During cells refinement, new born cells 
belonging to the same oct are saved in 
non-contiguous parts of the memory. 
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cells.

- The process increases grid 
resolution in the region of interest.

AMR 
(Adaptive Mesh Refinement) 

super-oct

The superoct ia a cube comprised of smaller cubes (octs). The 
superoct level operates akin to grid refinement, wherein each 
level increment represents a doubling factor of 2. The 'edge' of 
the superoct contains twice as many octs as the previous 
level.

superoct level (n) from 0 to 5.
In 3d, the number of octs per superoct is 8^n

n = 4  ---> octs per superoct = 4096
n = 5  ---> octs per superoct = 32768

The larger n, the better the changes for an optimal porting
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Adaptive Mesh Refinement (AMR):
the grid resolution is dynamically adapted to 
match the simulation's needs. Regions of 
interest are refined for higher resolution

Load Balancing:
RAMSES optimizes computational resources 
by distributing  the workload evenly across 
processing units.

Gravity:
Gravity field is computed based on the 
matter distribution.

Hydro:
The hydrodynamic equations describing the 
fluid motion are solved

N-body:
the trajectories of collisionless particles (e.g., 
dark matter) are evolved using the leapfrog 
algorithm.

Cooling:
Cooling processes to account for energy loss

More physics:
Additional physics as wids, star formation etc.

Basic functioning of 
(MINI)RAMSES



Main goal

Enhancing Efficiency and Decreasing 
Computational Time.

Adapting components of MINIRAMSES for 
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processing units.
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N-body:
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algorithm.
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More physics:
Additional physics as wids, star formation etc.

Gravity:
Gravity field is computed based on the 
matter distribution.

Identification of two main parts of the code 
suitable for GPU porting:  N-body + Hydro 

What and how

OpenACC directives to parallelize 
time-consuming loops and critical code 
regions;

Optimization techniques for memory 
management, and data movement
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1. M6 - Preliminary analysis: 
Investigation of MINIRAMSES to identify sections suitable for GPU parallelization

2. M7 - Getting GPU resources:
Submission o proposal @Cineca

3. M8 - GPU porting of Hydro modules:
Identification of modules to port on GPU, evaluation of time performances
Gradual GPU porting of individual modules used in hydrodynamics.

4. M9 - Tests
Tests and performance evaluations before and after
Evaluation of initial performance and identification of any issues or bugs.
Implementation of tests to evaluate scalability against super-oct level

5. M10 - Memory management of hydro modules:
Identification of strategy for memory management
Implementation of memory management technique.
Implementation of tests to evaluate memory workload
Optimization of the code on GPU to maximize performance 

6. M11? - Integration:
Integration in principal version of the code
Execution of tests to evaluate scalability

Timescale and 
milestones



Accomplished work and results
Got GPU hours on Leonardo with an accepted ISCRA C 
proposal

Identification of modules hydrodynamical modules to 
port on GPU.

Made the code work on Leonardo (took few months)
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During the resolution of code compilation issues, with the 
support @ Cineca and @NVIDIA, we concluded that 
offloading the Nbody component to the GPU is currently 
not feasible.

The Nbody modules rely on a c_f_pointer function, a 
Fortran intrinsic procedure used for interoperability with 
C/C++ code. This function facilitates the exchange of data 
between Fortran and other languages by providing a 
Fortran pointer from a C pointer or vice versa. However, 
this functionality is not available for GPU offloading



Hydrodynamic solver

The Godunov solver is a numerical technique for 
solving hyperbolic PDEs describing fluid flow.

Domain Discretization: The spatial domain undergoes 
discretization into cells, constituting a 3D grid.

Flux Calculation Across Cell Boundaries: For each cell, 
the Godunov method computes fluxes across its 
borders, considering fluid properties and boundary 
conditions.

State Variable Update: State variables of the fluid get 
updated based on computed fluxes, adhering to flow 
conservation equations.

Temporal Iteration: The entire process iterates over 
each time step until reaching a defined stopping 
criterion.
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Hydrodynamic solver

The Godunov solver is a numerical technique for 
solving hyperbolic PDEs describing fluid flow.

Domain Discretization: The spatial domain undergoes 
discretization into cells, constituting a 3D grid.

Flux Calculation Across Cell Boundaries: For each cell, 
the Godunov method computes fluxes across its 
borders, considering fluid properties and boundary 
conditions.

State Variable Update: State variables of the fluid get 
updated based on computed fluxes, adhering to flow 
conservation equations.

Temporal Iteration: The entire process iterates over 
each time step until reaching a defined stopping 
criterion.

run over 1 CPU

63% of the time is spent by the hydrodynamical solver (godfine1)
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Scheme of subroutines involved 
in the GPU hydro-portinggodfine1()

(godunov_fine.f90)

unsplit()
(umuscl.f90)

ctoprim(), 
uslope, 

traceNd() 
N=1,2,3, 

cmpflxm()

(umuscl.f90)

ctoprim(): The "ctoprim" subroutine converts 
conservative variables to primitive variables,density, 
momentum, energy) into primitive variables (density, 
velocity, pressure) .

uslope(): It is executed to compute gradients of primitive 
variables within each cell, providing information on 
slopes along cell edges.

traceNd(): the subroutine computes fluxes across cell 
boundaries in all directions of the domain, utilizing 
previously calculated gradients.

cmpflxm(): it calculates fluxes across cell boundaries 
based on primitive variables and cell interfaces, 
completing the flux calculation necessary for updating 
the fluid state variables.
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riemann_llf()
riemann_hllf()
rieamann_hll()

(riemann_utils.f90)



Accomplished work
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Full CPU run (1CPU)
Sedov3d test: Explosion of a supernovae in a constant medium. 
Only hydro, no gravity.

Major of the computational time is spent during the call unsplit()

Superoct 
level n=4 

Each call to godfine1 
solves hydrodynamics for 
one super-oct
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Porting the initial loops does not yield 
any significant speedup of the code.

The speedup of individual parts is not 
notable.

The bottleneck shifts to calls to previous 
subroutines.
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About time

full GPU
full CPU

interm
ediate

superoct level 4
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Improvements?

Each call to the godfine1 
subroutine results in a speedup 
of approximately 1.5 times 
(low).

The primary reason for the 
limited gain is the overhead 
associated with memory 
management and 
communication between the 
CPU and GPU.

These tasks consume a 
significant portion of the 
processing time, offsetting the 
potential performance 
improvements.
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However
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Even though memory 
management is not 
efficient, we achieve a 
significant speedup when 
increasing the number of 
octs per superoct to n=5.

However
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CPU

GPU

factor 10 speed-up

Even though memory 
management is not 
efficient, we achieve a 
significant speedup when 
increasing the number of 
octs per superoct to n=5.

However
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CPU

GPU

factor 10 speed-up

New bottleneck

Even though memory 
management is not 
efficient, we achieve a 
significant speedup when 
increasing the number of 
octs per superoct to n=5.

However
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Conclusions and 
Next steps

Impossible to complete to porting of Nbody component as long as the NVIDIA compiler 
is updated. Complete focus on hydrodynamics

We were able to port on GPU the majority of the subroutines associated with 
hydrodynamical component.

The code has a significant speed up in case of superoct level 5, but not superoct 
level 4

Optimizing memory management
Currently, each critical loops of the code is separately offloaded to the GPU using OpenACC 
directives, without any specific selection of variables to b used on the GPU. This leads to 
inefficient memory usage and continuous communication between host and device. 

Initial attempts to employ OpenACC for GPU memory management have not yielded the 
desired results. 

Improving memory movement could result in significant speed-ups, particularly in 
scenarios where superoct level 4.


