

Finanziato dall'Unione europea NextGenerationEU





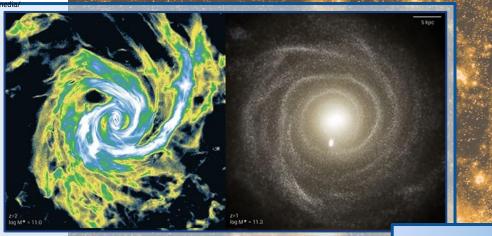


# RAMSES GPU

#### *Presented by: Raffaele Pascale*

Collaborators: Francesco Calura, Claudio Gheller, Emanuele De Rubeis, Donatella Romano, Valentina Cesare

Spoke 3 General Meeting, Elba 5-9 / 05, 2024


ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

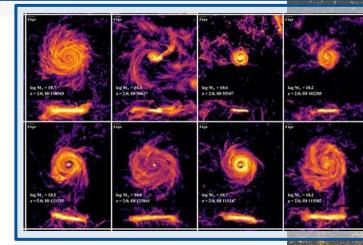
Credits:

#### Context

Hydrodynamical *N*-body simulations are **essential in astrophysics** since they provide tests for theories of galaxy formation and evolution.

**High spatial resolutions** are need to get a deeper understanding of galaxy physics.




dall'Unione europea

Ministero dell'Università e della Ricerca

#### Challenges

Italiadomani

ICSC



As spatial resolution increases, computational demands escalate dramatically

Addressing this challenge requires innovative solutions to optimize and accelerate computations.

An effective strategy involves porting hydrodynamical codes onto **GPU architecture (RAMSES)** 

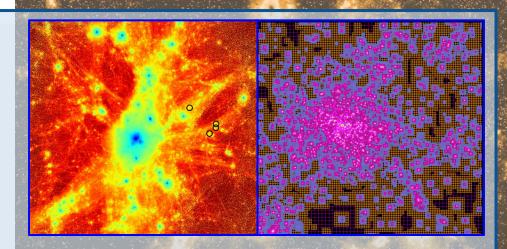
ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing










### Application to RAMSES and MINIRAMSES

**Ramses** and **Miniramses** are written in Fortran programming language

**Eulerian** approach for solving compressible hydrodynamics equations

Compatible with graphics processing units (GPUs)

Implements adaptive mesh refinement **(AMR)** for resolving structures on different scales



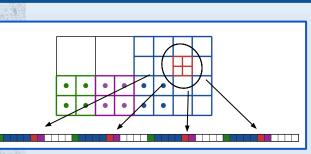
**MINIRAMSES** is a novel version of Ramses with a more efficient grid memory management system that facilitates memory access and significantly improves the chances of an efficient GPU porting of the code

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

### AMR

#### (Adaptive Mesh Refinement)

#### Identification of Oct Cell:

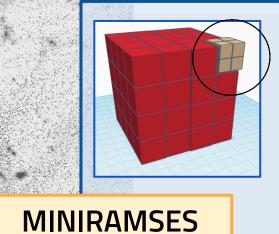

- It identifies an individual cell within the oct in the computational domain.

#### **Refinement Evaluation:**

- It assesses if the oct cell meets the criteria for refinement.
- Criteria may include gas density, density gradient, or other physical properties.

#### **Cell Refinement:**

- If the oct cell meets refinement criteria, it is divided into smaller cells.
- The process increases grid resolution in the region of interest.




#### Example of classical AMR working

(ICSC

Italia**domani** 

During cells refinement, new born cells belonging to the same oct are saved in non-contiguous parts of the memory.



RAMSES

Introduces the new macrostructure: of super-oct in cell refinement.

ocs in super-octs are saved in contiguous memory locations. Cell adjacent in space close in memory

#### minimizes memory access

#### ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

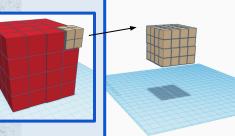
### AMR

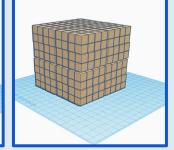
#### (Adaptive Mesh Refinement)

#### Identification of Oct Cell:

 It identifies an individual cell within the oct in the computational domain.

#### **Refinement Evaluation:**


- It assesses if the oct cell meets the criteria for refinement.
- Criteria may include gas density, density gradient, or other physical properties.


#### **Cell Refinement:**

- If the oct cell meets refinement criteria, it is divided into smaller cells.
- The process increases grid resolution in the region of interest.

### super-oct

ricsc



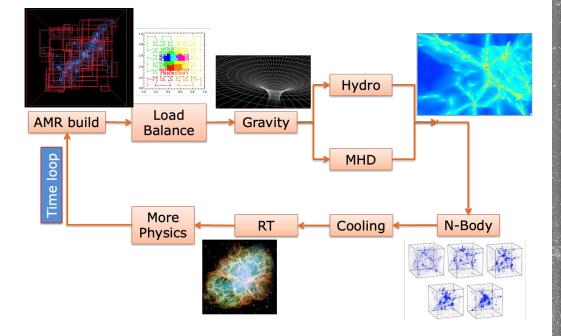


The superoct **ia a cube comprised of smaller cubes (octs)**. The superoct level operates akin to grid refinement, wherein each level increment represents a doubling factor of 2. The 'edge' of the superoct contains **twice as many octs as the previous level.** 

superoct level (**n**) from 0 to 5. In 3d, the number of octs per superoct is 8^n

**n = 4** ---> octs per superoct = 4096 **n = 5** ---> octs per superoct = 32768

The larger n, the better the changes for an optimal porting


Italia**domani** 

# Basic functioning of (MINI)RAMSES

Italia**domani** 

Ministero dell'Università e della Ricerca

dall'Unione europea



#### Adaptive Mesh Refinement (AMR):

the grid resolution is dynamically adapted to match the simulation's needs. Regions of interest are refined for higher resolution

#### Load Balancing:

RAMSES optimizes computational resources by distributing the workload evenly across processing units.

#### Gravity:

**ICSC** 

Gravity field is computed based on the matter distribution.

#### Hydro:

The hydrodynamic equations describing the fluid motion are solved

#### **N-body:**

the trajectories of collisionless particles (e.g., dark matter) are evolved using the leapfrog algorithm.

#### Cooling:

Cooling processes to account for energy loss

#### More physics:

Additional physics as wids, star formation etc.









### Main goal

Enhancing Efficiency and Decreasing Computational Time.

Adapting components of MINIRAMSES for GPU architecture, resulting in a significant acceleration factor.

#### Adaptive Mesh Refinement (AMR):

the grid resolution is dynamically adapted to match the simulation's needs. Regions of interest are refined for higher resolution

#### Load Balancing:

RAMSES optimizes computational resources by distributing the workload evenly across processing units.

#### Gravity:

Gravity field is computed based on the matter distribution.

#### Hydro:

The hydrodynamic equations describing the fluid motion are solved

#### N-body:

the trajectories of collisionless particles (e.g., dark matter) are evolved using the leapfrog algorithm.

#### Cooling:

Cooling processes to account for energy loss

#### More physics:

Additional physics as wids, star formation etc.









### Main goal

Enhancing Efficiency and Decreasing Computational Time.

Adapting components of MINIRAMSES for GPU architecture, resulting in a significant acceleration factor.

#### What and how

Identification of two main parts of the code suitable for GPU porting: *N*-body + Hydro

**OpenACC** directives to parallelize time-consuming loops and critical code regions;

Optimization techniques for memory management, and data movement

#### Adaptive Mesh Refinement (AMR):

the grid resolution is dynamically adapted to match the simulation's needs. Regions of interest are refined for higher resolution

#### Load Balancing:

RAMSES optimizes computational resources by distributing the workload evenly across processing units.

#### **Gravity**:

Gravity field is computed based on the matter distribution.

#### Hydro:

The hydrodynamic equations describing the fluid motion are solved

#### N-body:

the trajectories of collisionless particles (e.g., dark matter) are evolved using the leapfrog algorithm.

#### **Cooling:**

Cooling processes to account for energy loss More physics: Additional physics as wids, star formation etc.

# Timescale and milestones

- 1. M6 Preliminary analysis: Investigation of MINIRAMSES to identify sections suitable for GPU parallelization
- 2. M7 Getting GPU resources: Submission o proposal (@Cineca

#### **3. M8 - GPU porting of Hydro modules:** Identification of modules to port on GPU, evaluation of time performances Gradual GPU porting of individual modules used in hydrodynamics.

### 4. M9 - Tests

Tests and performance evaluations before and after Evaluation of initial performance and identification of any issues or bugs. Implementation of tests to evaluate scalability against super-oct level

5. M10 - Memory management of hydro modules: Identification of strategy for memory management Implementation of memory management technique. Implementation of tests to evaluate memory workload Optimization of the code on GPU to maximize performance

### 6. M11? - Integration:

Integration in principal version of the code Execution of tests to evaluate scalability







# Accomplished work and results

**Got GPU hours** on Leonardo with an accepted ISCRA C proposal

Identification of modules hydrodynamical modules to port on GPU.

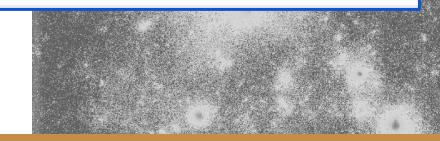
Made the code work on Leonardo (took few months)

During the resolution of code compilation issues, with the support @ Cineca and @NVIDIA, we concluded that offloading the Nbody component to the GPU is currently not feasible.

The Nbody modules rely on a c\_f\_pointer function, a Fortran intrinsic procedure used for interoperability with C/C++ code. This function facilitates the exchange of data between Fortran and other languages by providing a Fortran pointer from a C pointer or vice versa. However, this functionality is not available for GPU offloading



ISCRA Application form


**Class C Projects** 

code: HP10CLVXSG

Section 1: You and Your Group

#### Principal Investigator

| Title        | Dr                                                                     |
|--------------|------------------------------------------------------------------------|
| Name         | Raffaele                                                               |
| Surname      | PASCALE                                                                |
| Position     | Researcher                                                             |
| Institution  | Istituto Nazione di Astrofisica (INAF)                                 |
| Department   | INAF OAS Osservatorio di Astrofisica e Scienza dello spazio di Bologna |
| Address      | via piero gobetti 93/3, 40129, BO, Bologna                             |
| E-mail       | raffaele.pascale@inaf.it                                               |
| Phone Number | +393349265305                                                          |



ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

# Hydrodynamic solver

The **Godunov** solver is a numerical technique for solving hyperbolic PDEs describing fluid flow.

**Domain Discretization:** The spatial domain undergoes discretization into cells, constituting a 3D grid.

**Flux Calculation Across Cell Boundaries:** For each cell, the Godunov method computes fluxes across its borders, considering fluid properties and boundary conditions.

**State Variable Update:** State variables of the fluid get updated based on computed fluxes, adhering to flow conservation equations.

**Temporal Iteration:** The entire process iterates over each time step until reaching a defined stopping criterion.

Missione 4 • Istruzione e Ricerca

Ministero dell'Università e della Ricerca

dall'Unione europea

Italia**domani** 



run over 1 ( DI I

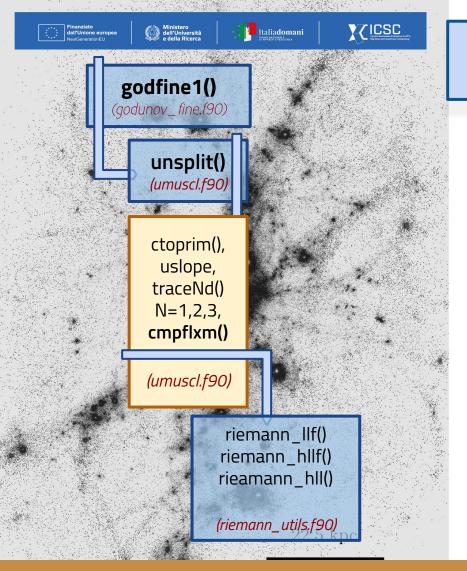


# Hydrodynamic solver

The **Godunov** solver is a numerical solving hyperbolic PDEs describing fluid

Domain Discretization: The spatial dom discretization into cells, constituting a 3D

Flux Calculation Across Cell Boundaries the Godunov method computes fluxe borders, considering fluid properties conditions.


State Variable Update: State variables of updated based on computed fluxes, adl conservation equations.

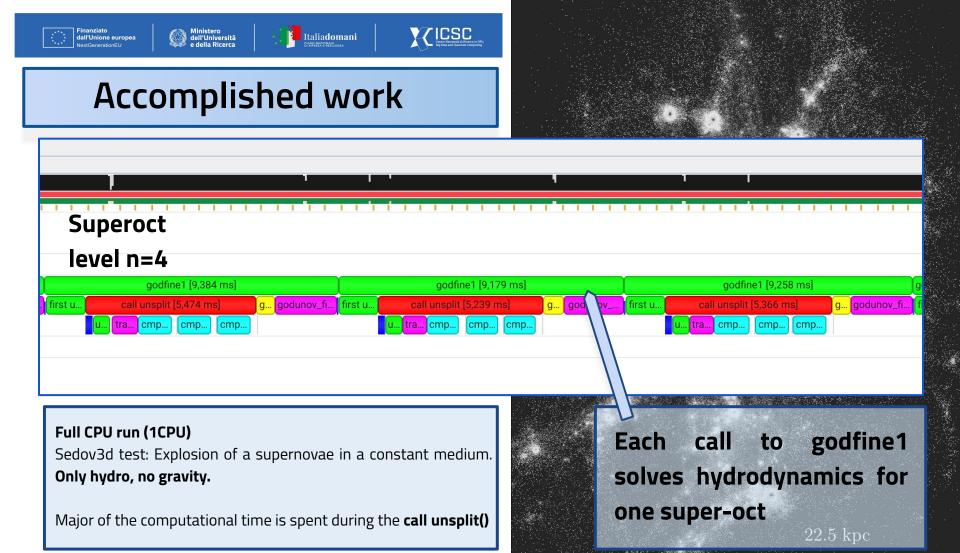
Temporal Iteration: The entire process iterates over each time step until reaching a defined stopping criterion.

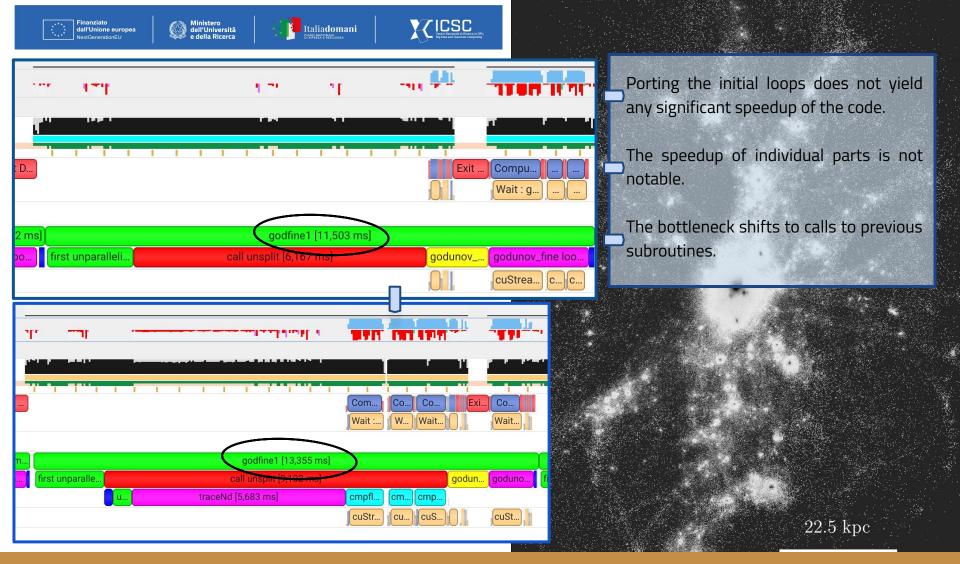
| libc_start_main                        |                     | 99,99 /usr/lib64/power9/libc-2.28.so                               |
|----------------------------------------|---------------------|--------------------------------------------------------------------|
| ✓ generic_start_main                   | •                   | 99,99 /usr/lib64/power9/libc-2.28.so                               |
| - main                                 |                     | 99,99 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d |
| - MAIN_                                |                     | 99,99 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d |
| ✓ mdl_init_                            |                     | 99,99 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d |
| mdl_init_master                        |                     | 99,97 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d |
| <ul> <li>adaptive_loop_</li> </ul>     |                     | 99,97 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d |
| amr_step_m_amr_step_                   |                     | 85,91 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d |
| godunov_fine_module_godunov_fine_      |                     | 62,93 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d |
| godunov_fine_module_godfine1_          |                     | 62,93 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d |
| ✓ unsplit_                             |                     | 41,55 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d |
| ✓ cmpflxm_                             | 0,00                | 23,13 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d |
| riemann_llf_                           | 19, <mark>81</mark> | 19,81 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d |
| cmpflxm_                               | 3,32                | 3,32 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d  |
| ⊸ unsplit_                             | 2,57                | 18,43 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d |
| trace3d_                               | 8,5 <mark>2</mark>  | 8,52 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d  |
| uslope_                                | 5,01                | 5,01 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d  |
| ctoprim_                               | 2,32                | 2,32 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d  |
| godunov_fine_module_godfine1_          | 19,2 <mark>7</mark> | 19,30 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d |
| hors_utils_get_grid_                   | •                   | 1,60 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d  |
| newdt_fine_module_m_newdt_fine_        |                     | 11,49 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d |
| synchro_hydro_fine_module_m_sync       |                     | 7,34 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d  |
| amr_step_m_amr_step_                   |                     | 1,64 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d  |
| godunov_fine_module_set_unew_          |                     | 1,28 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d  |
| godunov_fine_module_set_uold_          |                     | 1,20 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d  |
| m_init_refine_adaptive_                |                     | 9,05 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d  |
| init_refine_basegrid_module_m_init_ref |                     | 4,94 /m100_scratch/userexternal/dromano0/mini-ramses/bin/ramses3d  |

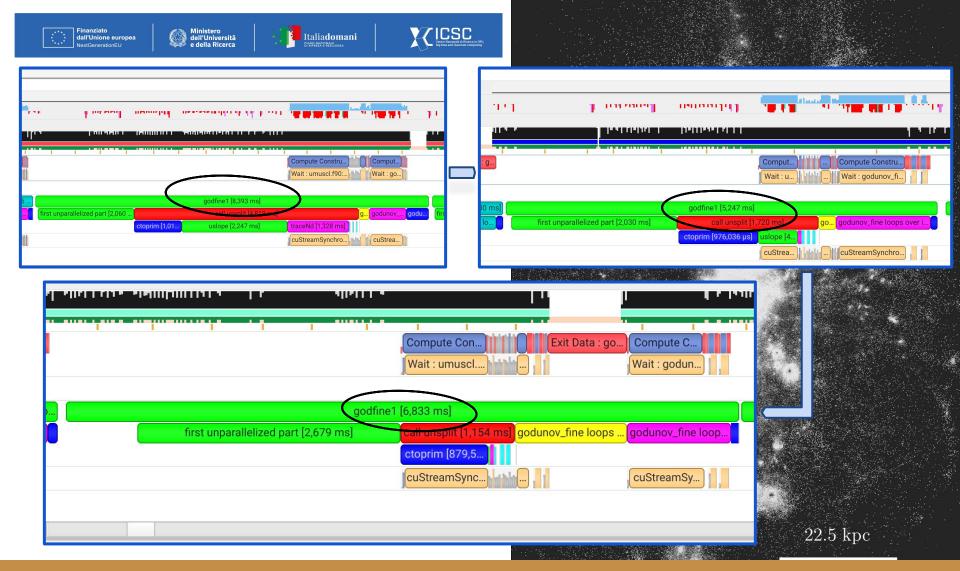
63% of the time is spent by the hydrodynamical solver (godfine1)

#### ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

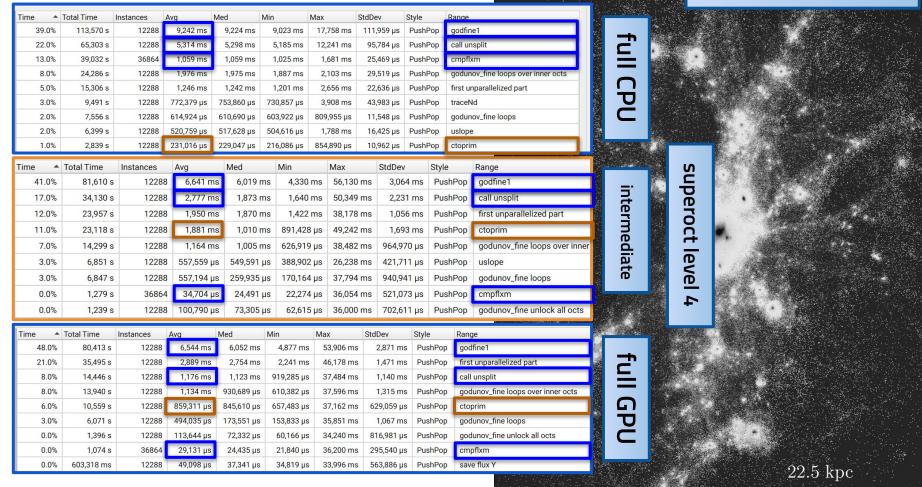



### Scheme of subroutines involved in the GPU hydro-porting


**ctoprim():** The "ctoprim" subroutine converts conservative variables to primitive variables,density, momentum, energy) into primitive variables (density, velocity, pressure).


**uslope():** It is executed to compute gradients of primitive variables within each cell, providing information on slopes along cell edges.

**traceNd():** the subroutine computes fluxes across cell boundaries in all directions of the domain, utilizing previously calculated gradients.


**cmpflxm():** it calculates fluxes across cell boundaries based on primitive variables and cell interfaces, completing the flux calculation necessary for updating the fluid state variables.











Italia**domani** 

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Finanziato

dall'Unione europea

Ministero dell'Università

e della Ricerca



8.0%

6.0%

3.0%

0.0%

0.0%

0.0%

13,940 s

10,559 s

6,071 s

1,396 s

1.074 s

603,318 ms

12288

12288

12288

12288

36864

12288

1,134 ms

859,311 µs

494,035 µs

113,644 µs

29,131 µs

49,098 µs

930,689 µs

845,610 µs

173,551 µs

72,332 µs

24,435 µs

37,341 µs

dall'Unione europea

Ministero dell'Università e della Ricerca

| Time   | Tatal Time | Instances | A           | Mad        | N.C        | May        | Oud D |                         | Otuda   | Rang    |                                 |
|--------|------------|-----------|-------------|------------|------------|------------|-------|-------------------------|---------|---------|---------------------------------|
|        | Total Time | Instances |             | 2014 CA19  | Min        | Max        | StdDe |                         | Style   |         |                                 |
| 39.0%  | 113,570 s  | 12288     | 9,242 ms    | 9,224 ms   | 9,023 ms   | 17,758 ms  |       | 959 µs                  | PushPop |         |                                 |
| 22.0%  | 65,303 s   | 12288     | 5,314 ms    | 5,298 ms   | 5,185 ms   | 12,241 ms  |       | 784 µs                  | PushPop | -       | unsplit                         |
| 13.0%  | 39,032 s   | 36864     | 1,059 ms    | 1,059 ms   | 1,025 ms   | 1,681 ms   |       | 469 µs                  | PushPop |         | flxm                            |
| 8.0%   | 24,286 s   | 12288     | 1,976 ms    | 1,975 ms   | 1,887 ms   | 2,103 ms   | -     | 519 µs                  | PushPop | 3       | unov_fine loops over inner octs |
| 5.0%   | 15,306 s   | 12288     | 1,246 ms    | 1,242 ms   | 1,201 ms   | 2,656 ms   |       | 636 µs                  | PushPop |         | unparallelized part             |
| 3.0%   | 9,491 s    | 12288     | 772,379 µs  | 753,860 µs | 730,857 µs | 3,908 ms   | 43,9  | 983 µs                  | PushPop | trace   | eNd                             |
| 2.0%   | 7,556 s    | 12288     | 614,924 µs  | 610,690 µs | 603,922 µs | 809,955 µs | 11,   | 548 µs                  | PushPop | godu    | unov_fine loops                 |
| 2.0%   | 6,399 s    | 12288     | 520,759 µs  | 517,628 µs | 504,616 µs | 1,788 ms   | 16,4  | 425 µs                  | PushPop | o uslo  | ре                              |
| 1.0%   | 2,839 s    | 12288     | 231,016 µs  | 229,047 µs | 216,086 µs | 854,890 µs | 10,9  | 962 µs                  | PushPop | o ctop  | prim                            |
| Time 🔺 | Total Time | Instances | Avg         | Med        | Min        | Max        |       | StdDev                  | St      | yle     | Range                           |
| 41.0%  | 81,610 s   | 1228      | 8 6,641 m   | is 6,019 r | ns 4,330   | ms 56,13   | 0 ms  | 3,064                   | 1 ms F  | PushPop | godfine1                        |
| 17.0%  | 34,130 s   | 1228      | 8 2,777 m   | is 1,873 r | ns 1,640   | ms 50,34   | 9 ms  | 2,23                    | I ms F  | PushPop | call unsplit                    |
| 12.0%  | 23,957 s   | 1228      | 8 1,950 m   | ıs 1,870 r | ns 1,422   | ms 38,17   | 8 ms  | 1,05                    | 5 ms F  | PushPop | first unparallelized part       |
| 11.0%  | 23,118 s   | 1228      | 8 1,881 m   | is 1,010 r | ns 891,42  | 8 µs 49,24 | 2 ms  | 1,693                   | 3 ms F  | PushPop | ctoprim                         |
| 7.0%   | 14,299 s   | 1228      | 8 1,164 m   | s 1,005 r  | ns 626,91  | 9 µs 38,48 | 2 ms  | 964,97                  | 0 µs F  | PushPop | godunov_fine loops over inne    |
| 3.0%   | 6,851 s    | 1228      | 8 557,559 µ | s 549,591  | µs 388,90  | 2 µs 26,23 | 8 ms  | 421,71                  | 1 µs F  | PushPop | o uslope                        |
| 3.0%   | 6,847 s    | 1228      | 8 557,194 µ | s 259,935  | µs 170,16  | 4 µs 37,79 | 4 ms  | 940,94                  | 1 µs F  | PushPop | godunov_fine loops              |
| 0.0%   | 1,279 s    | 3686      | 4 34,704 µ  | s 24,491   | µs 22,27   | 4 µs 36,05 | 4 ms  | 521,07                  | 3 µs F  | PushPop | cmpflxm                         |
| 0.0%   | 1,239 s    | 1228      | 8 100,790 µ | s 73,305   | µs 62,61   | 5 µs 36,00 | 0 ms  | 702,61                  | 1 µs F  | PushPop | godunov_fine unlock all octs    |
| Time 🔺 | Total Time | Instances | Avg         | Med        | Min        | Max        | StdD  | Dev                     | Style   | Ra      | nge                             |
| 48.0%  | 80,413 s   | 12288     | 6,544 ms    | 6,052 ms   | 4,877 ms   | 53,906 m   | is 2  | 2,871 ms                | PushF   | op go   | odfine1                         |
| 21.0%  | 35,495 s   | 12288     | 2,889 ms    | 2,754 ms   | 2,241 ms   | 46,178 m   | is 1  | 1 <mark>,471 m</mark> s | PushF   | op fir  | rst unparallelized part         |
| 8.0%   | 14,446 s   | 12288     | 1,176 ms    | 1,123 ms   | 919,285 µs | 37,484 m   | IS 1  | 1,140 ms                | PushF   | op ca   | all unsplit                     |

Italiadomani

**ICSC** Crosse Nasienale di Ricerce in H

### Improvements?

Each call to the godfine1 subroutine results in a speedup of approximately 1.5 times (low).

The primary reason for the limited gain is the overhead associated with memory management and communication between the CPU and GPU.

These tasks consume а significant portion of the processing time, offsetting the potential performance improvements.

22.0 KPC

#### ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

610,382 µs

657,483 µs

153,833 µs

60,166 µs

21,840 µs

34,819 µs

37,596 ms

37,162 ms

35,851 ms

34,240 ms

36,200 ms

33,996 ms

1,315 ms PushPop

PushPop

PushPop

PushPop

PushPop

PushPop

ctoprim

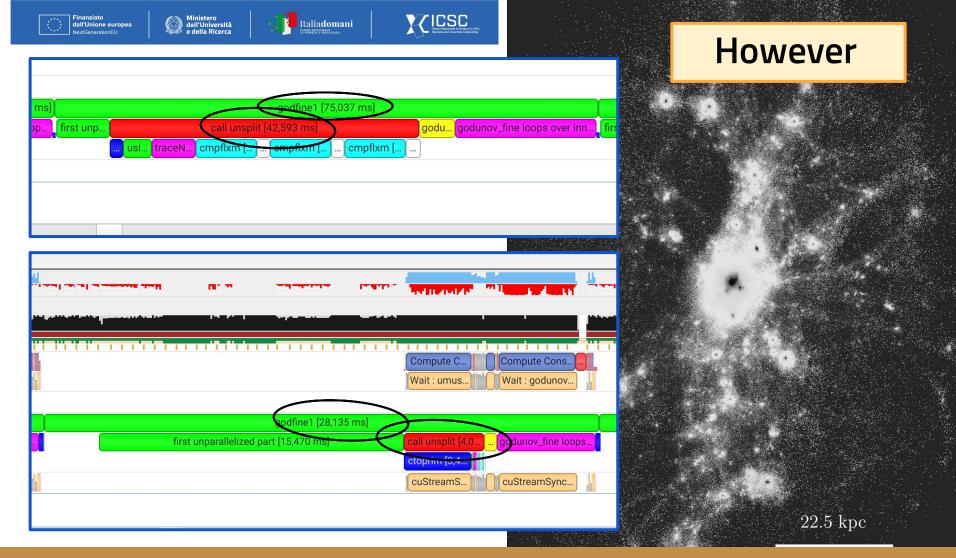
cmpflxm

save flux \

godunov\_fine loops

godunov\_fine unlock all octs

629,059 µs


1,067 ms

816,981 µs

295.540 µs

563,886 µs

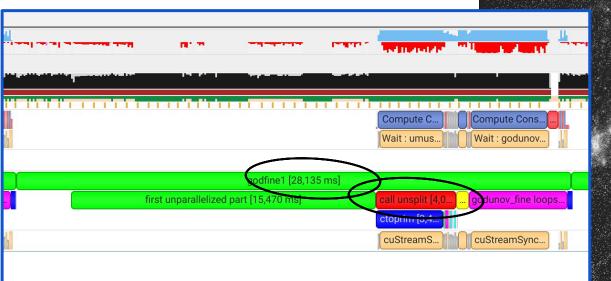
godunov\_fine loops over inner octs



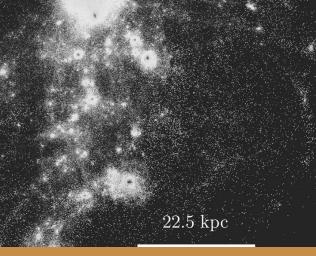


dall'Unione europea

usl... traceN... cmpflxm [


first unp.




godu... godunov\_fine loops over inn... fir

# However

Even though memory management is not efficient, we achieve a significant speedup when increasing the number of octs per superoct to n=5.



cmpflxm [



#### ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing



▲ Total Time

114,974 s

65,535 s

Time

39.0%

22.0%

dall'Unione europea

Instances

Avg

1536

1536

74,853 ms

42,666 ms



74,966 ms

42,772 ms

Min

73,579 ms

41,985 ms

Med



Max

124,786 ms

86,882 ms



Style

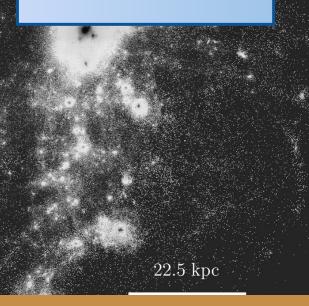
1,164 ms PushPop

PushPop

Range

godfine1

call unsplit


StdDev

1,358 ms

| However |  |
|---------|--|
|---------|--|

though Even memory management is not efficient, we achieve a significant speedup when increasing the number of octs per superoct to n=5.

| 13.0%                                                                  | 38,321 s                                                                                                                    | 4608                                                                         | 8,316 ms                                                                                                                                  | 8,359 ms                                                                                                                                  | 8,084 ms                                                                                                                                    | 12,626 ms                                                                                                                                  | 120,361 µs                                                                                                                                | PushPop                                                                                                    | cmpflxm                                                                                                                                                                                                    |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.0%                                                                  | 29,599 s                                                                                                                    | 1536                                                                         | 19,270 ms                                                                                                                                 | 19,294 ms                                                                                                                                 | 18,795 ms                                                                                                                                   | 19,835 ms                                                                                                                                  | 170,357 µs                                                                                                                                | PushPop                                                                                                    | godunov_fine loops over inner octs                                                                                                                                                                         |
| 3.0%                                                                   | 11,502 s                                                                                                                    | 1536                                                                         | 7,488 ms                                                                                                                                  | 7,489 ms                                                                                                                                  | 7,344 ms                                                                                                                                    | 11,030 ms                                                                                                                                  | 101,876 µs                                                                                                                                | PushPop                                                                                                    | first unparallelized part                                                                                                                                                                                  |
| 3.0%                                                                   | 9,245 s                                                                                                                     | 1536                                                                         | 6,019 ms                                                                                                                                  | 6,006 ms                                                                                                                                  | 5,937 ms                                                                                                                                    | 24,404 ms                                                                                                                                  | 470,563 µs                                                                                                                                | PushPop                                                                                                    | traceNd                                                                                                                                                                                                    |
| 2.0%                                                                   | 7,595 s                                                                                                                     | 1536                                                                         | 4,945 ms                                                                                                                                  | 4,959 ms                                                                                                                                  | 4,798 ms                                                                                                                                    | 5,092 ms                                                                                                                                   | <mark>62,453 µs</mark>                                                                                                                    | PushPop                                                                                                    | godunov_fine loops                                                                                                                                                                                         |
| 2.0%                                                                   | 6,194 s                                                                                                                     | 1536                                                                         | 4,033 ms                                                                                                                                  | 4,029 ms                                                                                                                                  | 3,926 ms                                                                                                                                    | 12,636 ms                                                                                                                                  | 224,601 µs                                                                                                                                | PushPop                                                                                                    | uslope                                                                                                                                                                                                     |
| 1.0%                                                                   | 2,952 s                                                                                                                     | 1536                                                                         | 1,922 ms                                                                                                                                  | 1,912 ms                                                                                                                                  | 1,889 ms                                                                                                                                    | 5,157 ms                                                                                                                                   | 84,360 µs                                                                                                                                 | PushPop                                                                                                    | save flux X                                                                                                                                                                                                |
| 1.0%                                                                   | 2,939 s                                                                                                                     | 1536                                                                         | 1,913 ms                                                                                                                                  | 1,904 ms                                                                                                                                  | 1,881 ms                                                                                                                                    | 4,884 ms                                                                                                                                   | 77,745 µs                                                                                                                                 | PushPop                                                                                                    | save flux Y                                                                                                                                                                                                |
| 1.0%                                                                   | 2,893 s                                                                                                                     | 1536                                                                         | 1,883 ms                                                                                                                                  | 1,875 ms                                                                                                                                  | 1,853 ms                                                                                                                                    | 4,849 ms                                                                                                                                   | 77,456 µs                                                                                                                                 | PushPop                                                                                                    | save flux Y CPU                                                                                                                                                                                            |
| 0.0%                                                                   | 48                                                                                                                          |                                                                              | 10151                                                                                                                                     | eed-                                                                                                                                      | 170ms                                                                                                                                       | 5,202 ms                                                                                                                                   | 88,561 µs                                                                                                                                 | PushPop                                                                                                    | ctoprim                                                                                                                                                                                                    |
| 0.0%                                                                   | 231,607 ms                                                                                                                  | 1536                                                                         | 150,786 µs                                                                                                                                | 150,028 µs                                                                                                                                | 139,678 µs                                                                                                                                  | 198,368 µs                                                                                                                                 | 6,764 µs                                                                                                                                  | PushPop                                                                                                    | godunov_fine unlock all octs                                                                                                                                                                               |
|                                                                        |                                                                                                                             |                                                                              |                                                                                                                                           |                                                                                                                                           |                                                                                                                                             |                                                                                                                                            |                                                                                                                                           |                                                                                                            |                                                                                                                                                                                                            |
|                                                                        |                                                                                                                             |                                                                              |                                                                                                                                           |                                                                                                                                           |                                                                                                                                             |                                                                                                                                            |                                                                                                                                           |                                                                                                            |                                                                                                                                                                                                            |
| Timo                                                                   | Total Timo                                                                                                                  | Instances                                                                    | Ava                                                                                                                                       | Mod                                                                                                                                       | Min                                                                                                                                         | Max                                                                                                                                        | StdDov                                                                                                                                    | Style                                                                                                      | 1                                                                                                                                                                                                          |
|                                                                        | Total Time                                                                                                                  | Instances                                                                    | Avg                                                                                                                                       | Med 29 738 ms                                                                                                                             | Min 25 495 ms                                                                                                                               | Max<br>98.395 ms                                                                                                                           | StdDev                                                                                                                                    | Style                                                                                                      | Range                                                                                                                                                                                                      |
| 49.0%                                                                  | 47,483 s                                                                                                                    | 1536                                                                         | 30,914 ms                                                                                                                                 | 29,738 ms                                                                                                                                 | 25,495 ms                                                                                                                                   | 98,395 ms                                                                                                                                  | 7,173 ms                                                                                                                                  | PushPop                                                                                                    | Range<br>godfine1                                                                                                                                                                                          |
| 49.0%<br>26.0%                                                         | 47,483 s<br>25,935 s                                                                                                        | 1536<br>1536                                                                 | 30,914 ms<br>16,885 ms                                                                                                                    | 29,738 ms<br>16,385 ms                                                                                                                    | 25,495 ms<br>11,785 ms                                                                                                                      | 98,395 ms<br>71,956 ms                                                                                                                     | 7,173 ms<br>4,329 ms                                                                                                                      | PushPop<br>PushPop                                                                                         | Range<br>godfine1<br>first unparallelized part                                                                                                                                                             |
| 49.0%<br>26.0%<br>8.0%                                                 | 47,483 s<br>25,935 s<br>7,759 s                                                                                             | 1536<br>1536<br>1536                                                         | 30,914 ms<br>16,885 ms<br>5,051 ms                                                                                                        | 29,738 ms<br>16,385 ms<br>4,743 ms                                                                                                        | 25,495 ms<br>11,785 ms<br>3,672 ms                                                                                                          | 98,395 ms<br>71,956 ms<br>36,269 ms                                                                                                        | 7,173 ms<br>4,329 ms<br>2,467 ms                                                                                                          | PushPop<br>PushPop<br>PushPop                                                                              | Range<br>godfine1<br>first unparallelized part<br>godunov_fine loops over inner octs                                                                                                                       |
| 49.0%<br>26.0%<br>8.0%<br>6.0%                                         | 47,483 s<br>25,935 s<br>7,759 s<br>6,615 s                                                                                  | 1536<br>1536<br>1536<br>1536                                                 | 30,914 ms<br>16,885 ms<br>5,051 ms<br>4,307 ms                                                                                            | 29,738 ms<br>16,385 ms<br>4,743 ms<br>4,226 ms                                                                                            | 25,495 ms<br>11,785 ms<br>3,672 ms<br>3,681 ms                                                                                              | 98,395 ms<br>71,956 ms<br>36,269 ms<br>38,111 ms                                                                                           | 7,173 ms<br>4,329 ms<br>2,467 ms<br>1,162 ms                                                                                              | PushPop<br>PushPop<br>PushPop<br>PushPop                                                                   | Range<br>godfine1<br>first unparallelized part<br>godunov_fine loops over inner octs<br>call unsplit                                                                                                       |
| 49.0%<br>26.0%<br>8.0%<br>6.0%<br>5.0%                                 | 47,483 s<br>25,935 s<br>7,759 s<br>6,615 s<br>5,609 s                                                                       | 1536<br>1536<br>1536<br>1536<br>1536                                         | 30,914 ms<br>16,885 ms<br>5,051 ms<br>4,307 ms<br>3,652 ms                                                                                | 29,738 ms<br>16,385 ms<br>4,743 ms<br>4,226 ms<br>3,612 ms                                                                                | 25,495 ms<br>11,785 ms<br>3,672 ms<br>3,681 ms<br>3,075 ms                                                                                  | 98,395 ms<br>71,956 ms<br>36,269 ms<br>38,111 ms<br>15,200 ms                                                                              | 7,173 ms<br>4,329 ms<br>2,467 ms<br>1,162 ms<br>600,606 µs                                                                                | PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop                                                        | Range<br>godfine1<br>first unparallelized part<br>godunov_fine loops over inner octs<br>call unsplit<br>ctoprim                                                                                            |
| 49.0%<br>26.0%<br>8.0%<br>6.0%<br>5.0%<br>2.0%                         | 47,483 s<br>25,935 s<br>7,759 s<br>6,615 s<br>5,609 s<br>2,112 s                                                            | 1536<br>1536<br>1536<br>1536<br>1536<br>1536                                 | 30,914 ms<br>16,885 ms<br>5,051 ms<br>4,307 ms<br>3,652 ms<br>1,375 ms                                                                    | 29,738 ms<br>16,385 ms<br>4,743 ms<br>4,226 ms<br>3,612 ms<br>1,554 ms                                                                    | 25,495 ms<br>11,785 ms<br>3,672 ms<br>3,681 ms<br>3,075 ms<br>528,941 μs                                                                    | 98,395 ms<br>71,956 ms<br>36,269 ms<br>38,111 ms<br>15,200 ms<br>31,943 ms                                                                 | 7,173 ms<br>4,329 ms<br>2,467 ms<br>1,162 ms<br>600,606 µs<br>1,465 ms                                                                    | PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop                                             | Range<br>godfine1<br>first unparallelized part<br>godunov_fine loops over inner octs<br>call unsplit<br>ctoprim<br>godunov_fine loops                                                                      |
| 49.0%<br>26.0%<br>8.0%<br>6.0%<br>5.0%<br>2.0%<br>0.0%                 | 47,483 s<br>25,935 s<br>7,759 s<br>6,615 s<br>5,609 s<br>2,112 s<br>397,297 ms                                              | 1536<br>1536<br>1536<br>1536<br>1536<br>1536<br>1536                         | 30,914 ms<br>16,885 ms<br>5,051 ms<br>4,307 ms<br>3,652 ms<br>1,375 ms<br>258,657 µs                                                      | 29,738 ms<br>16,385 ms<br>4,743 ms<br>4,226 ms<br>3,612 ms<br>1,554 ms<br>196,445 µs                                                      | 25,495 ms<br>11,785 ms<br>3,672 ms<br>3,681 ms<br>3,075 ms<br>528,941 µs<br>188,089 µs                                                      | 98,395 ms<br>71,956 ms<br>36,269 ms<br>38,111 ms<br>15,200 ms<br>31,943 ms<br>33,599 ms                                                    | 7,173 ms<br>4,329 ms<br>2,467 ms<br>1,162 ms<br>600,606 µs<br>1,465 ms<br>1,174 ms                                                        | PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop                                  | Range<br>godfine1<br>first unparallelized part<br>godunov_fine loops over inner octs<br>call unsplit<br>ctoprim<br>godunov_fine loops<br>godunov_fine unlock all octs                                      |
| 49.0%<br>26.0%<br>8.0%<br>6.0%<br>5.0%<br>2.0%<br>0.0%                 | 47,483 s<br>25,935 s<br>7,759 s<br>6,615 s<br>5,609 s<br>2,112 s<br>397,297 ms<br>311,673 ms                                | 1536<br>1536<br>1536<br>1536<br>1536<br>1536<br>1536<br>4608                 | 30,914 ms<br>16,885 ms<br>5,051 ms<br>4,307 ms<br>3,652 ms<br>1,375 ms<br>258,657 µs<br>67,637 µs                                         | 29,738 ms<br>16,385 ms<br>4,743 ms<br>4,226 ms<br>3,612 ms<br>1,554 ms<br>196,445 µs<br>62,396 µs                                         | 25,495 ms<br>11,785 ms<br>3,672 ms<br>3,681 ms<br>3,075 ms<br>528,941 µs<br>188,089 µs<br>58,275 µs                                         | 98,395 ms<br>71,956 ms<br>36,269 ms<br>38,111 ms<br>15,200 ms<br>31,943 ms<br>33,599 ms<br>10,126 ms                                       | 7,173 ms<br>4,329 ms<br>2,467 ms<br>1,162 ms<br>600,606 µs<br>1,465 ms<br>1,174 ms<br>157,362 µs                                          | PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop                       | Range<br>godfine1<br>first unparallelized part<br>godunov_fine loops over inner octs<br>call unsplit<br>ctoprim<br>godunov_fine loops<br>godunov_fine unlock all octs<br>cmpflxm                           |
| 49.0%<br>26.0%<br>8.0%<br>6.0%<br>5.0%<br>2.0%<br>0.0%<br>0.0%         | 47,483 s<br>25,935 s<br>7,759 s<br>6,615 s<br>5,609 s<br>2,112 s<br>397,297 ms<br>311,673 ms<br>214,278 ms                  | 1536<br>1536<br>1536<br>1536<br>1536<br>1536<br>1536<br>4608<br>1536         | 30,914 ms<br>16,885 ms<br>5,051 ms<br>4,307 ms<br>3,652 ms<br>1,375 ms<br>258,657 µs<br>67,637 µs<br>139,504 µs                           | 29,738 ms<br>16,385 ms<br>4,743 ms<br>4,226 ms<br>3,612 ms<br>1,554 ms<br>196,445 µs<br>62,396 µs<br>137,149 µs                           | 25,495 ms<br>11,785 ms<br>3,672 ms<br>3,681 ms<br>3,075 ms<br>528,941 µs<br>188,089 µs<br>58,275 µs<br>133,125 µs                           | 98,395 ms<br>71,956 ms<br>36,269 ms<br>38,111 ms<br>15,200 ms<br>31,943 ms<br>33,599 ms<br>10,126 ms<br>3,299 ms                           | 7,173 ms<br>4,329 ms<br>2,467 ms<br>1,162 ms<br>600,606 µs<br>1,465 ms<br>1,174 ms<br>157,362 µs<br>80,693 µs                             | PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop                       | Range<br>godfine1<br>first unparallelized part<br>godunov_fine loops over inner octs<br>call unsplit<br>ctoprim<br>godunov_fine loops<br>godunov_fine unlock all octs<br>cmpflxm<br>traceNd                |
| 49.0%<br>26.0%<br>8.0%<br>5.0%<br>2.0%<br>0.0%<br>0.0%<br>0.0%         | 47,483 s<br>25,935 s<br>7,759 s<br>6,615 s<br>5,609 s<br>2,112 s<br>397,297 ms<br>311,673 ms<br>214,278 ms<br>131,411 ms    | 1536<br>1536<br>1536<br>1536<br>1536<br>1536<br>1536<br>4608<br>1536<br>1536 | 30,914 ms<br>16,885 ms<br>5,051 ms<br>4,307 ms<br>3,652 ms<br>1,375 ms<br>258,657 µs<br>67,637 µs<br>139,504 µs<br>85,5554 µs             | 29,738 ms<br>16,385 ms<br>4,743 ms<br>4,226 ms<br>3,612 ms<br>1,554 ms<br>196,445 µs<br>62,396 µs<br>137,149 µs<br>61,875 µs              | 25,495 ms<br>11,785 ms<br>3,672 ms<br>3,681 ms<br>3,075 ms<br>528,941 µs<br>188,089 µs<br>58,275 µs<br>133,125 µs<br>59,161 µs              | 98,395 ms<br>71,956 ms<br>36,269 ms<br>38,111 ms<br>15,200 ms<br>31,943 ms<br>33,599 ms<br>10,126 ms<br>3,299 ms<br>34,311 ms              | 7,173 ms<br>4,329 ms<br>2,467 ms<br>1,162 ms<br>600,606 µs<br>1,465 ms<br>1,174 ms<br>157,362 µs<br>80,693 µs<br>874,105 µs               | PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop | Range<br>godfine1<br>first unparallelized part<br>godunov_fine loops over inner octs<br>call unsplit<br>ctoprim<br>godunov_fine loops<br>godunov_fine unlock all octs<br>cmpflxm<br>traceNd<br>save flux Y |
| 49.0%<br>26.0%<br>8.0%<br>5.0%<br>2.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0% | 47,483 s<br>25,935 s<br>7,759 s<br>6,615 s<br>2,112 s<br>397,297 ms<br>311,673 ms<br>214,278 ms<br>131,411 ms<br>110,519 ms | 1536<br>1536<br>1536<br>1536<br>1536<br>1536<br>1536<br>4608<br>1536<br>1536 | 30,914 ms<br>16,885 ms<br>5,051 ms<br>4,307 ms<br>3,652 ms<br>1,375 ms<br>258,657 µs<br>67,637 µs<br>139,504 µs<br>85,554 µs<br>71,952 µs | 29,738 ms<br>16,385 ms<br>4,743 ms<br>4,226 ms<br>3,612 ms<br>1,554 ms<br>196,445 µs<br>62,396 µs<br>137,149 µs<br>61,875 µs<br>63,206 µs | 25,495 ms<br>11,785 ms<br>3,672 ms<br>3,681 ms<br>3,075 ms<br>528,941 µs<br>188,089 µs<br>58,275 µs<br>133,125 µs<br>59,161 µs<br>60,237 µs | 98,395 ms<br>71,956 ms<br>36,269 ms<br>38,111 ms<br>15,200 ms<br>31,943 ms<br>33,599 ms<br>10,126 ms<br>3,299 ms<br>34,311 ms<br>10,159 ms | 7,173 ms<br>4,329 ms<br>2,467 ms<br>1,162 ms<br>600,606 µs<br>1,465 ms<br>1,174 ms<br>157,362 µs<br>80,693 µs<br>874,105 µs<br>261,684 µs | PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop | Range<br>godfine1<br>first unparallelized part<br>godunov_fine loops over inner octs<br>call unsplit<br>ctoprim<br>godunov_fine loops<br>godunov_fine unlock all octs<br>cmpflxm<br>traceNd<br>save flux Y |
| 49.0%<br>26.0%<br>8.0%<br>5.0%<br>2.0%<br>0.0%<br>0.0%<br>0.0%         | 47,483 s<br>25,935 s<br>7,759 s<br>6,615 s<br>5,609 s<br>2,112 s<br>397,297 ms<br>311,673 ms<br>214,278 ms<br>131,411 ms    | 1536<br>1536<br>1536<br>1536<br>1536<br>1536<br>1536<br>4608<br>1536<br>1536 | 30,914 ms<br>16,885 ms<br>5,051 ms<br>4,307 ms<br>3,652 ms<br>1,375 ms<br>258,657 µs<br>67,637 µs<br>139,504 µs<br>85,5554 µs             | 29,738 ms<br>16,385 ms<br>4,743 ms<br>4,226 ms<br>3,612 ms<br>1,554 ms<br>196,445 µs<br>62,396 µs<br>137,149 µs<br>61,875 µs              | 25,495 ms<br>11,785 ms<br>3,672 ms<br>3,681 ms<br>3,075 ms<br>528,941 µs<br>188,089 µs<br>58,275 µs<br>133,125 µs<br>59,161 µs              | 98,395 ms<br>71,956 ms<br>36,269 ms<br>38,111 ms<br>15,200 ms<br>31,943 ms<br>33,599 ms<br>10,126 ms<br>3,299 ms<br>34,311 ms              | 7,173 ms<br>4,329 ms<br>2,467 ms<br>1,162 ms<br>600,606 µs<br>1,465 ms<br>1,174 ms<br>157,362 µs<br>80,693 µs<br>874,105 µs               | PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop<br>PushPop | Range<br>godfine1<br>first unparallelized part<br>godunov_fine loops over inner octs<br>call unsplit<br>ctoprim<br>godunov_fine loops<br>godunov_fine unlock all octs<br>cmpflxm<br>traceNd<br>save flux Y |



#### ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing



▲ Total Time

Time

39.0%

22.0%

13.0%

10.0%

3.0%

3.0%

2.0%

2.0%

1.0%

1.0%

1.0%

0.0%

0.0%

**TO5**36

1536

2788C

231,607 ms

<u>1)15</u>{

150,786 µs

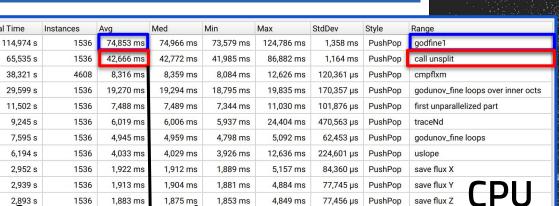
**ee**a

150,028 µs





88,561 µs


6,764 µs

PushPop

PushPop

ctoprim

godunov\_fine unlock all octs



5,202 ms

198,368 µs

## However

though Even memory management is not efficient, we achieve a significant speedup when increasing the number of octs per superoct to n=5.

New bottleneck

| Time 🔺 | Total Time | Instances | Avg        | Med        | Min        | Max       | StdDev     | Style   | Range                              |  |
|--------|------------|-----------|------------|------------|------------|-----------|------------|---------|------------------------------------|--|
| 49.0%  | 47,483 s   | 1536      | 30,914 ms  | 29,738 ms  | 25,495 ms  | 98,395 ms | 7,173 ms   | PushPop | godfine1                           |  |
| 26.0%  | 25,935 s   | 1536      | 16,885 ms  | 16,385 ms  | 11,785 ms  | 71,956 ms | 4,329 ms   | PushPop | first unparallelized part          |  |
| 8.0%   | 7,759 s    | 1536      | 5,051 ms   | 4,743 ms   | 3,672 ms   | 36,269 ms | 2,467 ms   | PushPop | godunov_fine loops over inner octs |  |
| 6.0%   | 6,615 s    | 1536      | 4,307 ms   | 4,226 ms   | 3,681 ms   | 38,111 ms | 1,162 ms   | PushPop | call unsplit                       |  |
| 5.0%   | 5,609 s    | 1536      | 3,652 ms   | 3,612 ms   | 3,075 ms   | 15,200 ms | 600,606 µs | PushPop | ctoprim                            |  |
| 2.0%   | 2,112 s    | 1536      | 1,375 ms   | 1,554 ms   | 528,941 µs | 31,943 ms | 1,465 ms   | PushPop | godunov_fine loops                 |  |
| 0.0%   | 397,297 ms | 1536      | 258,657 µs | 196,445 µs | 188,089 µs | 33,599 ms | 1,174 ms   | PushPop | godunov_fine unlock all octs       |  |
| 0.0%   | 311,673 ms | 4608      | 67,637 µs  | 62,396 µs  | 58,275 µs  | 10,126 ms | 157,362 µs | PushPop | cmpflxm                            |  |
| 0.0%   | 214,278 ms | 1536      | 139,504 µs | 137,149 µs | 133,125 µs | 3,299 ms  | 80,693 µs  | PushPop | traceNd                            |  |
| 0.0%   | 131,411 ms | 1536      | 85,554 µs  | 61,875 µs  | 59,161 µs  | 34,311 ms | 874,105 µs | PushPop | save flux Y                        |  |
| 0.0%   | 110,519 ms | 1536      | 71,952 µs  | 63,206 µs  | 60,237 µs  | 10,159 ms | 261,684 µs | PushPop |                                    |  |
| 0.0%   | 101,006 ms | 1536      | 65,759 µs  | 62,842 µs  | 60,340 µs  | 2,166 ms  | 57,353 µs  | PushPop | save flux Z                        |  |
| 0.0%   | 98,094 ms  | 1536      | 63,863 µs  | 62,495 µs  | 59,268 µs  | 1,096 ms  | 26,479 µs  | PushPop | save flux X                        |  |

1710 ms

139,678 µs

#### Missione 4 • Istruzione e Ricerca

22.5 kpc

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

# Conclusions and Next steps



Italia**domani** <sup>Diano Mazionale Diangesa e reseluenza</sup>



Impossible to complete to porting of Nbody component as long as the NVIDIA compiler is updated. Complete focus on hydrodynamics

# We were able to port on GPU the majority of the subroutines associated with hydrodynamical component.

The code has a significant speed up in case of superoct level 5, but not superoct level 4

#### Optimizing memory management

Currently, each critical loops of the code is separately offloaded to the GPU using OpenACC directives, without any specific selection of variables to b used on the GPU. This leads to inefficient memory usage and continuous communication between host and device.

Initial attempts to employ OpenACC for GPU memory management have not yielded the desired results.

Improving memory movement could result in significant speed-ups, particularly in scenarios where superoct level 4.