
RAMSES GPU

Spoke 3 General Meeting, Elba 5-9 / 05, 2024

Presented by:
Raffaele Pascale

Collaborators:
Francesco Calura, Claudio Gheller, Emanuele De Rubeis,

Donatella Romano, Valentina Cesare

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Hydrodynamical N-body simulations are
essential in astrophysics since they
provide tests for theories of galaxy
formation and evolution.

High spatial resolutions are need to get
a deeper understanding of galaxy
physics.

Context

As spatial resolution increases, computational
demands escalate dramatically

Addressing this challenge requires innovative solutions
to optimize and accelerate computations.

An effective strategy involves porting hydrodynamical
codes onto GPU architecture (RAMSES)

Challenges

Credits:
https://www.tng-project.org/media/

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Application to RAMSES
and MINIRAMSES

Ramses and Miniramses are written in Fortran
programming language

Eulerian approach for solving compressible
hydrodynamics equations

Compatible with graphics processing units
(GPUs)

Implements adaptive mesh refinement (AMR)
for resolving structures on different scales

MINIRAMSES is a novel version of Ramses with a more
efficient grid memory management system that
facilitates memory access and significantly improves the
chances of an efficient GPU porting of the code

Identification of Oct Cell:
- It identifies an individual cell within

the oct in the computational
domain.

Refinement Evaluation:
- It assesses if the oct cell meets the

criteria for refinement.
- Criteria may include gas density,

density gradient, or other physical
properties.

Cell Refinement:
- If the oct cell meets refinement

criteria, it is divided into smaller
cells.

- The process increases grid
resolution in the region of interest.

AMR
(Adaptive Mesh Refinement)

Introduces the new
macrostructure: of super-oct in
cell refinement.

ocs in super-octs are saved in
contiguous memory locations.
Cell adjacent in space close in
memory

minimizes memory accessMINIRAMSES

RAMSES

Example of classical AMR working

During cells refinement, new born cells
belonging to the same oct are saved in
non-contiguous parts of the memory.

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Identification of Oct Cell:
- It identifies an individual cell within

the oct in the computational
domain.

Refinement Evaluation:
- It assesses if the oct cell meets the

criteria for refinement.
- Criteria may include gas density,

density gradient, or other physical
properties.

Cell Refinement:
- If the oct cell meets refinement

criteria, it is divided into smaller
cells.

- The process increases grid
resolution in the region of interest.

AMR
(Adaptive Mesh Refinement)

super-oct

The superoct ia a cube comprised of smaller cubes (octs). The
superoct level operates akin to grid refinement, wherein each
level increment represents a doubling factor of 2. The 'edge' of
the superoct contains twice as many octs as the previous
level.

superoct level (n) from 0 to 5.
In 3d, the number of octs per superoct is 8^n

n = 4 ---> octs per superoct = 4096
n = 5 ---> octs per superoct = 32768

The larger n, the better the changes for an optimal porting

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Adaptive Mesh Refinement (AMR):
the grid resolution is dynamically adapted to
match the simulation's needs. Regions of
interest are refined for higher resolution

Load Balancing:
RAMSES optimizes computational resources
by distributing the workload evenly across
processing units.

Gravity:
Gravity field is computed based on the
matter distribution.

Hydro:
The hydrodynamic equations describing the
fluid motion are solved

N-body:
the trajectories of collisionless particles (e.g.,
dark matter) are evolved using the leapfrog
algorithm.

Cooling:
Cooling processes to account for energy loss

More physics:
Additional physics as wids, star formation etc.

Basic functioning of
(MINI)RAMSES

Main goal

Enhancing Efficiency and Decreasing
Computational Time.

Adapting components of MINIRAMSES for
GPU architecture, resulting in a significant
acceleration factor.

Adaptive Mesh Refinement (AMR):
the grid resolution is dynamically adapted to
match the simulation's needs. Regions of
interest are refined for higher resolution

Load Balancing:
RAMSES optimizes computational resources
by distributing the workload evenly across
processing units.

Gravity:
Gravity field is computed based on the
matter distribution.

Hydro:
The hydrodynamic equations describing the
fluid motion are solved

N-body:
the trajectories of collisionless particles (e.g.,
dark matter) are evolved using the leapfrog
algorithm.

Cooling:
Cooling processes to account for energy loss

More physics:
Additional physics as wids, star formation etc.

Main goal

Enhancing Efficiency and Decreasing
Computational Time.

Adapting components of MINIRAMSES for
GPU architecture, resulting in a significant
acceleration factor.

Adaptive Mesh Refinement (AMR):
the grid resolution is dynamically adapted to
match the simulation's needs. Regions of
interest are refined for higher resolution

Load Balancing:
RAMSES optimizes computational resources
by distributing the workload evenly across
processing units.

Hydro:
The hydrodynamic equations describing the
fluid motion are solved

N-body:
the trajectories of collisionless particles (e.g.,
dark matter) are evolved using the leapfrog
algorithm.

Cooling:
Cooling processes to account for energy loss

More physics:
Additional physics as wids, star formation etc.

Gravity:
Gravity field is computed based on the
matter distribution.

Identification of two main parts of the code
suitable for GPU porting: N-body + Hydro

What and how

OpenACC directives to parallelize
time-consuming loops and critical code
regions;

Optimization techniques for memory
management, and data movement

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

1. M6 - Preliminary analysis:
Investigation of MINIRAMSES to identify sections suitable for GPU parallelization

2. M7 - Getting GPU resources:
Submission o proposal @Cineca

3. M8 - GPU porting of Hydro modules:
Identification of modules to port on GPU, evaluation of time performances
Gradual GPU porting of individual modules used in hydrodynamics.

4. M9 - Tests
Tests and performance evaluations before and after
Evaluation of initial performance and identification of any issues or bugs.
Implementation of tests to evaluate scalability against super-oct level

5. M10 - Memory management of hydro modules:
Identification of strategy for memory management
Implementation of memory management technique.
Implementation of tests to evaluate memory workload
Optimization of the code on GPU to maximize performance

6. M11? - Integration:
Integration in principal version of the code
Execution of tests to evaluate scalability

Timescale and
milestones

Accomplished work and results
Got GPU hours on Leonardo with an accepted ISCRA C
proposal

Identification of modules hydrodynamical modules to
port on GPU.

Made the code work on Leonardo (took few months)

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

During the resolution of code compilation issues, with the
support @ Cineca and @NVIDIA, we concluded that
offloading the Nbody component to the GPU is currently
not feasible.

The Nbody modules rely on a c_f_pointer function, a
Fortran intrinsic procedure used for interoperability with
C/C++ code. This function facilitates the exchange of data
between Fortran and other languages by providing a
Fortran pointer from a C pointer or vice versa. However,
this functionality is not available for GPU offloading

Hydrodynamic solver

The Godunov solver is a numerical technique for
solving hyperbolic PDEs describing fluid flow.

Domain Discretization: The spatial domain undergoes
discretization into cells, constituting a 3D grid.

Flux Calculation Across Cell Boundaries: For each cell,
the Godunov method computes fluxes across its
borders, considering fluid properties and boundary
conditions.

State Variable Update: State variables of the fluid get
updated based on computed fluxes, adhering to flow
conservation equations.

Temporal Iteration: The entire process iterates over
each time step until reaching a defined stopping
criterion.

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Hydrodynamic solver

The Godunov solver is a numerical technique for
solving hyperbolic PDEs describing fluid flow.

Domain Discretization: The spatial domain undergoes
discretization into cells, constituting a 3D grid.

Flux Calculation Across Cell Boundaries: For each cell,
the Godunov method computes fluxes across its
borders, considering fluid properties and boundary
conditions.

State Variable Update: State variables of the fluid get
updated based on computed fluxes, adhering to flow
conservation equations.

Temporal Iteration: The entire process iterates over
each time step until reaching a defined stopping
criterion.

run over 1 CPU

63% of the time is spent by the hydrodynamical solver (godfine1)

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Scheme of subroutines involved
in the GPU hydro-portinggodfine1()

(godunov_fine.f90)

unsplit()
(umuscl.f90)

ctoprim(),
uslope,

traceNd()
N=1,2,3,

cmpflxm()

(umuscl.f90)

ctoprim(): The "ctoprim" subroutine converts
conservative variables to primitive variables,density,
momentum, energy) into primitive variables (density,
velocity, pressure) .

uslope(): It is executed to compute gradients of primitive
variables within each cell, providing information on
slopes along cell edges.

traceNd(): the subroutine computes fluxes across cell
boundaries in all directions of the domain, utilizing
previously calculated gradients.

cmpflxm(): it calculates fluxes across cell boundaries
based on primitive variables and cell interfaces,
completing the flux calculation necessary for updating
the fluid state variables.

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

riemann_llf()
riemann_hllf()
rieamann_hll()

(riemann_utils.f90)

Accomplished work

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Full CPU run (1CPU)
Sedov3d test: Explosion of a supernovae in a constant medium.
Only hydro, no gravity.

Major of the computational time is spent during the call unsplit()

Superoct
level n=4

Each call to godfine1
solves hydrodynamics for
one super-oct

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Porting the initial loops does not yield
any significant speedup of the code.

The speedup of individual parts is not
notable.

The bottleneck shifts to calls to previous
subroutines.

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

About time

full GPU
full CPU

interm
ediate

superoct level 4

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Improvements?

Each call to the godfine1
subroutine results in a speedup
of approximately 1.5 times
(low).

The primary reason for the
limited gain is the overhead
associated with memory
management and
communication between the
CPU and GPU.

These tasks consume a
significant portion of the
processing time, offsetting the
potential performance
improvements.

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

However

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Even though memory
management is not
efficient, we achieve a
significant speedup when
increasing the number of
octs per superoct to n=5.

However

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

CPU

GPU

factor 10 speed-up

Even though memory
management is not
efficient, we achieve a
significant speedup when
increasing the number of
octs per superoct to n=5.

However

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

CPU

GPU

factor 10 speed-up

New bottleneck

Even though memory
management is not
efficient, we achieve a
significant speedup when
increasing the number of
octs per superoct to n=5.

However

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Conclusions and
Next steps

Impossible to complete to porting of Nbody component as long as the NVIDIA compiler
is updated. Complete focus on hydrodynamics

We were able to port on GPU the majority of the subroutines associated with
hydrodynamical component.

The code has a significant speed up in case of superoct level 5, but not superoct
level 4

Optimizing memory management
Currently, each critical loops of the code is separately offloaded to the GPU using OpenACC
directives, without any specific selection of variables to b used on the GPU. This leads to
inefficient memory usage and continuous communication between host and device.

Initial attempts to employ OpenACC for GPU memory management have not yielded the
desired results.

Improving memory movement could result in significant speed-ups, particularly in
scenarios where superoct level 4.

