

Finanziato dall'Unione europea NextGenerationEU

Modelling Hydrogen Distribution in the postreionization Universe Matteo Viel – SISSA

Spoke 3 General Meeting, Elba 5-9 / 05, 2024

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Scientific Rationale

- HI (Atomic/Neutral Hydrogen) outside and inside galaxies. Modelling is challenging, huge variety of scales involved, redshifts, environments, physical effects (including radiative transfer).
- Atomic processes: Lyman- α scattering and 21cm electron spin-flip transition

Sherwood Relics collaboration (G3 Puchwein+23 (w MV) - HI distribution including radiative transfer on GPU to simulate patchy reionization

 Probing cosmological structure formation processes

- Probing the cold gas phase and its relation with galaxy formation
- Address fundamental physics questions like nature of Dark Matter, Neutrinos, Dark Energy

Technical Objectives, Methodologies and Solutions

- Lyman-α forest: Code developement: G3→G4 and AREPO to simulate the low-density IGM [eventually physics could be incorporated into OpenGADGET – this is mainly cooling.c routine + interface with GPUs ATON code for Radiative Transfer].
- > Intensity Mapping: Code devolopement: HIP-POP. Populating the DM haloes with HI to produce realistic mocks ready for pipeline testing (e.g. foreground removal/cross-correlation analysis).
- Combination of the two above with Machine Learning techniques to 1) increase resolution; 2) learn sub-grid physics; 3) learn how to marginalize over sub-grid physics; 3) emulation and fast generation of hydro sims/maps.

Timescale, Milestones and KPIs

HIP-POP	Description	Target	KPIs
M8	We generated mock catalogs with Pinocchio (input for the code). We tested the HIP-POP code on them, to mock a light cone (full sky) and Meerkat patch.	Compute the Cls (power spectrum in harmonic space) - generate first maps	First testing of the pipeline (without instrumental noise) - github repository created
M9	Further validation of the code by using different setup of ICs - cosmo parameters	Compute CIs for the different cases, validate HI profile within haloes, validate HI population (different methods). Tests of CPU/memory consumption and scalability	Release of the code on github With example/small data set provided
M10	Scientific validation	Perform scientific runs applied to several physical setup (different scales,redshifts, experiment) including cross- correlations	Publication presenting the code

ROYAI

Accomplished Work, Results

- Modelling of the low-density IGM and post-reionization – about 75M CPUhrs since 2017

DiRAC

About People Publications Images & Movies Data Access

Science and

Facilities Counci

Technology

XŶ

erc

University of

PHYSICAL REVIEW D 109, 043511 (2024)

Unveiling dark matter free streaming at the smallest scales with the high redshift Lyman-alpha forest

Vid Iršič^{1,2,*} Matteo Viel,^{3,4,5,6,7} Martin G, Haehnelt,^{1,8} James S, Bolton^{9,9} Margherita Molaro,⁹ Ewald Puchwein^{0,10} Elisa Boera,^{5,6} George D. Becker^{9,11} Prakash Gaikwad,¹² Laura C. Keating^{9,13} and Girish Kulkarni^{9,14} ¹Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, United Kingdom ²Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom ³SISSA—International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy ⁴INFN—National Institute for Nuclear Physics, Via Valerio 2, I-34127 Trieste, Italy ⁵IFPU, Institute for Fundamental Physics of the Universe, via Beirut 2, 34151 Trieste, Italy ⁶INAF, Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I-34131 Trieste, Italy ⁷ICSC—Centro Nazionale di Ricerca in High Performance Computing, Big Data e Quantum Computing, Via Magnanelli 2, Bologna, Italy

Constraints on:

- \succ Gas thermal state
- > And its pressure
- And a possible warm dark \succ matter signature at z=4-5

- HIP-POP HIProbe-POPulator code developed with Marta Spinelli (work started in 2020, with early contributions from Tiago Castro and Emiliano Munari)
- -Currently development branch is <u>https://github.com/spinemart/HIP-POP/tree/Matteo_develop</u>
- -Main branch maintained by Marta Spinelli <u>https://github.com/spinemart/HIP-POP</u>
- 1. Lightcone created with PINOCCHIO CODE (minimum halo mass is 10¹⁰Msun/h) catalogs are copied in lapoderosa (OATS) and Ulysses (SISSA) total size about 75 Gbytes 1 Gpc/h box 2048^3 size $\sigma_8 = 0.9 \Omega_m = 0.25$ flat Universe

Marta Spinelli

- From haloes to 21cm intensity with M_HI vs M_halo relation

- From 21cm intensity maps to actual mock MeerKAT like data

HI Mass at redshift 0.291

➤To be cross-correlated with galaxies

To be used for foreground blind challenges

To check effect of beam/scanning strategy and its impact on parameter estimation

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

- Lagrangian Deep Learning: learning physical maps from initial displacement fields https://github.com/maurorigo/JERALD

Mauro Rigo SISSA PhD student Supervisors: Trotta and Viel

jaxLDL: JAX implementation of Lagrangian Deep Learning

Installation

Testing

Documentation

jaxLDL is the <u>JAX</u> implementation of the <u>code</u> performing <u>Lagrangian Deep Learning</u>, a machine learning method to paint baryons and related quantities on top of N-body only simulations.

The package is based on JAX and <u>mpi4jax</u>, and it uses MPI to implement parallel Cloud-In-Cell (CIC) painting and interpolation algorithms as well as parallel forward and backward Fourier transforms via <u>FFTW</u>.

- ➤Generative model to produce maps and to learn effective description of subgrid physics.
- Fast Particle Mesh Nbody solver + hydro simulations
- Displacement fields modelled with an effective potential

- New work: JAX implementation, parallelized, faster 5-6 orders of magnitude compared to full hydro for a reference simulation, extended to HI

Dark matter particles from approximate N-body simulations are moved via a displacement field S_{θ} : $X' = X + S_{\theta}$, $S_{\theta} = \nabla U_{d}(\delta(X))$

The parameters θ are trained by matching the output density $\delta_{model}(X')$ with a target map δ_{target} through a L1 or L2 loss:

 $\mathscr{L} = \frac{1}{N_{\text{pixel}}} \|\delta_{\text{model}} - \delta_{\text{target}}\|^p$

Optionally, a non-linearity can be added after the displacements to model phenomena that cannot be modelled via matter transport:

 $\delta_{\text{model}} = \text{ReLU}(b_1 \,\delta(X')^{\mu} + b_0)$

Pre-training is important Somehow tricky the non-linear transform to model HI (needs fine tuning)

Next Steps and Expected Results

- Implementation of magnetic fields effects into G3-G4 (in the ICS)
- HIP-POP development, improvement of performances, user friendly interface (M8-M9-M10)
- JERALD application to HI \rightarrow public repository