

Finanziato dall'Unione europea NextGenerationEU

Machine Learning and Deep Learning algorithms for Gaia mission data analysis Lorenzo Monti, Tatiana Muraveva

INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna

Spoke 3 General Meeting, Elba 5-9 / 05, 2024

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Scientific Rationale

- RR Lyrae stars are periodic (Period < 1 day), pulsating, variable stars that play a crucial role in stellar astrophysics.
- → There is a correlation between RRL's light curves and their metallicities ([Fe/H]).
- → Gaia Data Release 3 provides a catalogue of 270 905 RRLs along with their time-series photometry.

Project Main Goal: Derive metallicities of RR Lyrae stars from their time-series photometry data using Machine Learning/Deep Learning algorithms.

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Technical Objectives, Methodologies and Solutions

Time-series Extrinsic Regression TSER(1) is a *regression task* that learns the mapping from time series data to a scalar value. That *task* depend on the whole series, rather than depending more on recent than past values such as time-series forecasting **(TSF)**.

The difference between *time series classification* (**TSC**) and **TSER** is that TSC maps a time series to a finite set of discrete labels while TSER predicts a continuous value from the time series.

As described in *Tan, et al.* (1), a **TSER model** is a function $\mathcal{T} \to \mathcal{R}$, where \mathcal{T} is a class of time series and \mathcal{R} a class of scalar values. **TSER** seeks to learn a regression model from a dataset $\mathcal{D} = \{(t_1, r_1), \ldots, (t_n, r_n)\}$, where t_i is a time series and r_i is a continuous scalar value.

1. Tan, Chang Wei, et al. "Time series extrinsic regression: Predicting numeric values from time series data." *Data Mining and Knowledge Discovery* 35 (2021): 1032-1060.

Technical Objectives, <u>Methodologies</u> and Solutions

Dataset preparation

As regarding the time-series photometry dataset we selected a set of **6696 RRab stars** based on:

- err[Fe/H] < 0.4 dex
- peak-to-peak amplitude < 1.4 mag
- Number of epochs > 50
- ϕ_{31} error < 0.10

Technical Objectives, <u>Methodologies</u> and Solutions

Data pre-processing

01

For the predictive modeling of the [Fe/H] from the light curves, we use the following two-dimensional sequences as input variables:

$$X^{} = \begin{cases} m^{} - < m > \\ Ph * P \end{cases} \quad t = 1, ..., N_{ep}$$

where $m^{\langle t \rangle}$ is the magnitude of the light curve, $\langle m \rangle$ is the mean magnitude, *Ph* is the phase and *P* the period. N_{ep} is the number of epochs.

Technical Objectives, <u>Methodologies</u> and Solutions

Data pre-processing 02

After that, (1) we applied the *spline smoothing* method.

The method is applied (2) to minimize fluctuations, noise, outliers and obtain the same number of points for each light curve (264).

(3) Finally the pre-processed catalog is stored. The script *pre-processing.py* is contained within the micro-library₍₁₎ written to obtain the estimation model.

So, the final input tensor for ML/DL methods have a shape of [6696, 264, 2] —> [batch size, time steps, features].

1. Micro-library to estimate metallicity from RR-Lyrae phototometric light curves time series through machine learning and deep learning models. Link:https://github.com/LorenzoMonti/metallicity_rrls

Technical Objectives, Methodologies and Solutions

Data pre-processing 03

Sample weights for metallicity distribution

Based on step 2, we computed Gaussian kernel density estimates of the [Fe/H] distributions.

Evaluated them for every object in the datasets, and assigned a density weight w_d to each data point by taking the inverse of the estimated normalized density.

Technical Objectives, Methodologies and <u>Solutions</u>

Several both Machine Learning and Deep Learning models have been created. As regards Deep Learning models, **Convolutional** models, **Recurrent** models and **Mixed architectures** among these were taken into consideration.

Machine Learning	Convolutional Neural	Recurrent Neural	Mixed		
Models	Networks	Networks	architectures		
 Random forest Support Vector Regressor 	FCNResnetInceptionTime	- GRU - BiGRU - LSTM - BiLSTM	- ConvGRU - ConvLSTM		

Each model was trained on **3 different datasets**: (i) *raw dataset without spline*, (ii) *raw dataset with spline* and (iii) *preprocessed dataset with spline*. This is to verify the actual contribution of the preprocessing. The results obtained are the average resulting from the (stratified) **K-fold cross validation** (n_splits=5).

Technical Objectives, Methodologies and <u>Solutions</u>

Technical Objectives, Methodologies and <u>Solutions</u>

Architecture based on GRU

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 264, 2)]	0
gru (GRU)	(None, 264, 20)	1440
dropout (Dropout)	(None, 264, 20)	0
gru_1 (GRU)	(None, 264, 16)	1824
dropout_1 (Dropout)	(None, 264, 16)	0
gru_2 (GRU)	(None, 8)	624
dropout_2 (Dropout)	(None, 8)	0
dense (Dense)	(None, 1)	9

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Accomplished Work, Results

Steps done

Transformers architecture implementation.

The best results use the dataset with smoothing splines and averaging in magnitude. Among these, RNNs are the type of network with the best results and in particular **GRU** and **BiGRU** have obtained practically the same results.

^{R²} 0.9451

on validation set and 0.9472 on training set

RMSE 0.0739

on validation set and 0.0724 on training set

мае 0.0547

on validation set and 0.0537 on training set

GRU

BiGRU

Accomplished Work, Results

			-												training		· .	validation	training	validation	
											r2		r2	0	0,947		0,94	49	0,9472	0,9451	
											/		wrms	se 0	0,0723		0,07	'36	0,0721	0,0735	
										/			wma	ie <mark>0</mark>	0,0545 0		0,05	551	0,0534	0,0544	
													rmse	0	0,0727			0,07	' 4	0,0724	0,0739
Metrics	L ST training	rM validation	BiL Si training	TM validation	GRU	validation	B training	GRU validation	catalog_raw_splin	vL STM validation	Conv training	rGRU validation	mae	0	,0548	5		0,05	554	0,0537	0,0547
r2 w rmse w mae	0,9303 0,0828 0,0612 0,0833	0,9275 0,0845 0,0622	0,9328 0,0813 0,0601 0,0818	0,933 0,0818 0,0604 0,0604	2 0,9398 3 0,0771 4 0,0564 2 0,0776	0,936 0,0794 0,0577 0,0798	0,94	0,93	75 0,9367 34 0,074 34 0,0584 38 0,0784	7 0,9236 9 0,0868 3 0,0637 5 0,0872	0,9372 0,0788 0,0583	0,9306 0,0827 0,0609	3 0,9281 7 0,0612 9 0,0612	8 0,085 2 0,081 2 0,081	20 0,8 59 0,0 16 0,0 83 0,0	102 0, 728 0, 531 0 731 0	0822 0,070 0,059 0,052 0,824 0,071	0,0783 0,0783 0,0571 13 0,0786			
mae note	0,0616	0,0626	0,0605	0,0607	7 0,0568	0,058	0,057	0,05	38 0,059	0,0641	0.0588	0,0814	4 0.061	5 0,061	19 0.0	534 0,	0592 0,052	0,0574	The table p	presents the res	ults, in terms of
CLASSIFICA	resn	net	gru	u	bigru		Inc	ption	bi	lstm	conv	vgru	la	stm		fon	con	nvistm	R ² , wrmse,	wmae, rmse a	<i>ind mae</i> , of all
	I ST	FM	Bil Si	тм	GRU	_/	В	GRI	catalog_mean_spli	ne vi STM	Cons	GRU		ECN	le le	aception	RE	ESNET	MI/DI mo	dels and for each	n datasets
Metrics	training	validation	training	validation	training	validation	training	validation	training	validation	training	validation	training	validation	training	validation	training	validation			l'addocto:
r2	0,9353 0	0,9306	0,942	0,9375	5 0,947 0,9	*	0,9472	0,9451	0,9485	0,9357	0,9433	0,9361	0,9402	0,9368	0,9546	0,9442	0,9507	0,9388			
wrmse	0,0798 0	0,0827	0,0755	0,0784	0,0723	738	0,0721	0,0735	0,0712	0,0796	0,0747	0,0793	0,0767	0,0789	0,0669	0,0742	0,0697	0,0776			
w mae	0.0803	0.0831	0,0008	0,0584	3 0 0727 0 0	74	0.0724	0,0344	0.0716	0.08	0,057	0,0597	0.077	0.008	0.0872	0.0745	0,0524	0.05/0	In the for	us the results	of the models
mae	0,0609 0	0,0624	0,0572	0,0588	8 0,0548 0,0	554	0,0537	0,0547	0,0543	0,0599	0,0573	0.06	0,0574	0,0583	0,0508	0,0556	0,0526	0,0579	In the roc	as, the results	of the models
note																			with best	performance, G	RU and BiGRU,
CLASSIFICA	bigr	ru	gru	u	inceptio	n	bi	stm	re	snet	fc	'n	COI	nvgru	c	onvistm		lstm	1		
																			are shown.		
									catalog_raw_nospl	ine	1		1		1						
Making	LST	M	BiL ST	TM	GRU	and define	B	GRU	Con	VLSTM	Conv	GRU	F	FCN	le destruites	nception	RE	ESNET			
r2	0.85	valdation 0.82	0.8939	0.8574	0.9 0.8	validation	training	0.217	err	err	0.937	0.7148	0.8898	0.7188	0.966	0.7888	0.954	0.7863			
wrmse	5,00	0,01	0,1022	0,1185	0,1	1		0.277	err	err	0,0787	0,1676	0.1042	0.1664	0,0579	0,1442	0,0673	0.1451			
w mae		2	0,0789 0	0,0918	0,8	47		0,225	err	err	0,0581	0,1315	0,0786	0,1297	0.037	0,1135	0,0443	0,1132			
rmse	0,115	0,126	0,1027 0	0,119	0,1	1		0,275	err	err	0,0794	0,168	0,1049	0,1669	0,0584	0,1447	0,0676	0,1455			
mae			0,0794 0	0,0923	0,8	51		0,223	err	err	0,0585	0,1319	0,0792	0,1302	0.0374	0,1139	0,0446	0,1135			
note		1							diverge-> r2 basso	6				1							
			bilet	-	leter		ina	-e		cast				fan		onvictor	-	siaru			

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Accomplished Work, Results

We compared our results with the best result in scientific literature.

Our results	GRU								
~	training	validation							
r2	0,947	0,9449							
WRMSE	0,0723	0,0736							
WMAE	0,0545	0,0551							
RMSE	0,0727	0,074							
MAE	0,0548	0,0554							

Dekany's results	BiLSTM							
	training	validation						
r2	0,96	0,93						
WRMSE	0,1	0,13						
wMAE	0,07	0,1						
RMSE	0,15	0,18						
MAE	0,12	0,13						

The plot on the left shows **our metallicity prediction results** while the one on the right shows **Dekany's metallicity prediction** results₍₁₎.

1. Dékány, István, and Eva K. Grebel. "Photometric Metallicity Prediction of Fundamental-mode RR Lyrae Stars in the Gaia Optical and K s Infrared Wave Bands by Deep Learning." The Astrophysical Journal Supplement Series 261.2 (2022).

Missione 4 • Istruzione e Ricerca

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Timescale, Milestones and KPIs

DEC 2023 – OCT 2024 Building Neural Networks such as **LSTM** and **Transformers architecture** in order to estimate metallicity of RR Lyrae stars from time-series photometry based on the catalogue produced on the step (1).

		2023		2024								
ML/DL algorithms for Gaia mission data analysis	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
catalogue of RR Lyrae stars and Metallicity validation	•											
Create time-series photometry Dataset												
LSTM implementation												
Transformers architecture implementation												

Slide from ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing in Trieste 2023

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Timescale, Milestones and KPIs

DEC 2023 – OCT 2024 Building Neural Networks such as **LSTM** and **Transformers architecture** in order to estimate metallicity of RR Lyrae stars from time-series photometry based on the catalogue produced on the step (1).

ML/DL algorithms for Gaia mission data analysis		2023		2024								
		NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
catalogue of RR Lyrae stars and Metallicity validation												
Create time-series photometry Dataset												
LSTM implementation												
Transformers architecture implementation												

We did everything we were expected to do. Furthermore, we worked in dataset pre-processing, have implemented other models (10) between machine learning and deep learning and an open source repository located on github. **OOP** constructs also allow for the easy implementation of new models.

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Next Steps and Expected Results

Next steps:

- **Fine tuning optimization** of the hyperparameters on the models that performed in a better way.
- New architectures like **Transformers** applied to time series.
- Approaches used for Natural Language Processing such as **seq2seq** and applying them to time series.
- Work with different catalogs such as using **RR Lyrae type c**.

Expected results (and KPI):

- A **scientific paper** "Metallicity of RR Lyrae stars from the Gaia Data Release 3 catalogue exploiting Machine Learning algorithms" by Muraveva et al. submitted to MNRAS.
- A **technical paper** "Using Deep Learning to predict Photometric Metallicity of RR-Lyrae variable Stars from its light curves in Gaia G band" by Monti et al. in preparation for submission to Machine Learning and AI for Sensors Journal.
- A **scientific paper** "Utilizing Deep Learning Techniques to Analyze the Metallicity of RR Lyrae Stars in the Gaia Data Release 3 Catalogue" by Monti et al. in preparation for submission to MNRAS.
- An **open source repository** released with CD/CI pipeline and automatic release.

Thank you for your attention

contact

Lorenzo Monti lorenzo.monti@inaf.it - Tatiana Muraveva tatiana.muraveva@inaf.it

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing