
Radio Imaging Code Kernels
De Rubeis Emanuele (INAF-IRA)

Claudio Gheller (INAF-IRA)

Giovanni Lacopo (OATs)

Giuliano Taffoni (OATs)

Luca Tornatore (OATs)

Monthly WP1-WP2 Meeting, 20/03/2024

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Radio astronomy imaging
In radio astronomy, imaging is the process through which the brightness distribution I(l,m) is determined by
the complex visibility V(u,v,w) observed by a radio telescope

Radio astronomy imaging
There is a Fourier transform relationship between the observed visibilities V(u,v,w) and the brightness
distribution I(l,m)

Why HPC in radio astronomy
Current and upcoming radio-interferometers are expected to
produce volumes of data of increasing size that need to be
processed in order to generate the corresponding sky brightness
distributions through imaging.

This represents an outstanding computational challenge,
especially when large fields of view and/or high-resolution
observations are processed.

Imaging represents one of the most computational demanding
steps of the processing pipeline, both in terms of memory request
and in terms of computing time.

For example, this 83,900x83,500 pixels image can take ~250,000 core-hours! Sweijen et al. (2022)

What is RICK?
RICK (Radio Imaging Code Kernels) is a code that addresses the w-stacking
algorithm (Offringa+14) for imaging, combining parallel and accelerated
solutions.

• C, C++, CUDA, HIP

• MPI & OpenMP for CPU parallelization

• The code is now capable of running full on GPUs, using CUDA, HIP or
OpenMP for offloading

• An optimized version of the reduce has been developed on both CPU
(combining MPI+OpenMP) and GPU (using NCCL or RCCL, for Nvidia and
AMD respectively); the FFT is done through the cuFFTMp library for Nvidia

• Currently under benchmarking on Leonardo (CINECA, No.4 Top500 June
23)

Adapted from Gheller et al. (2023)

GP
U

(C
UD

A,
 O

pe
nM

P)

What were our targets?

ü Full GPU enabling, avoiding data moving back and forth between CPU and GPU

ü Code presentation at ADASS XXXIII (November 2023)

ü Data release of the GPU-enabled code (namely RICK v2.0)

https://www.ict.inaf.it/gitlab/claudio.gheller/hpc_imaging/-/tree/RICKv2.0?ref_type=tags

Why do we need multiple GPUs?

Modern and future radio telescopes will produce a huge amount of data, that hardly fit the memory of a
single GPU (not even a single node)

Why do we need multiple GPUs?

Modern and future radio telescopes will produce a huge amount of data, that hardly fit the memory of a
single GPU (not even a single node)

The answer is then to distribute the problem among multiple GPUs and multiple nodes

Easy to say, more difficult to do…

Nvidia Collective Communication Library (NCCL)
NCCL is a library of multi-GPU collective communication used to support the Reduce operation.

• Provides fast collectives over multiple GPU both within and across nodes.

• Supports a variety of interconnect technologies (e.g. NVLink, PCIe).

• NCCL closely follows the popular collectives API defined by MPI, so can be very “natural” to use.

Nvidia Collective Communication Library (NCCL)
NCCL implements the Reduce operation as an intra-node ring, and an inter-node ring, when GPUs assigned
to the main tasks communicate with RDMA with GPUs in different nodes without passing through the CPUs.

Nvidia Collective Communication Library (NCCL)
NCCL implements the Reduce operation as an intra-node ring, and an inter-node ring, when GPUs assigned
to the main tasks communicate with RDMA with GPUs in different nodes without passing through the CPUs.

The requirement of a dedicated stream for the Reduce comes from the presence
of asynchronous memory copies that collided with the ones within a previous
function call

cuFFTMp
Fast Fourier Transform is a critical operation in radio astronomy, because it determines the relationship
between the “observed” and the “desired” data (the final image).

For the FFT step, RICK implements the cuFFTMp library, that allows to distribute the FFT problem using
NVSHMEM

NVSHMEM uses asynchronous, GPU-initiated data transfers,

eliminating synchronization overheads between the CPU and

the GPU

cuFFTMp
Data are distributed among multiple GPUs and inverse-transformed.

However, now we have data already on the GPU!

Starting data distributed among N
MPI tasks on the CPU

Data copied among N GPUs Z2Z 2D FFT transformed data Data re-distributed in the natural
order on GPUs

Data copied back to CPU

.

1

2

N

cuFFTMp
We may need to do this FFT process even 100-1000s times, and at each time we need to create and
destroy the descriptor, which is the data structure used by the library for the FFT.

This was critical for the performance, but we overcame this problem using CUDA kernels to write the to-be-
transformed data each loop, and then putting them directly inside the descriptor.

Another issue comes with the joint usage of NCCL and NVSHMEM, which can bring to severe errors during
the FFT: to solve this, we need to switch off NCCL support for NVSHMEM at runtime by setting
NVSHMEM_DISABLE_NCCL=1.

Was it worth it?
We are currently testing our code on Leonardo (CINECA) using Nvidia HPC-SDK 24.3. We are using real
LOFAR-VLBI data, that is the closest facility to SKA in terms of size of end-products.

Comparing the code with GPUs, with respect to the one on CPUs:

• for a small test (~4 GB), we got a speed-up up to a factor ~ x27 for both Reduce and FFT

• for a big test (~530 GB), we got a speed-up up to a factor ~ x175 for the Reduce and ~ x32 for the FFT (but
here we are still doing benchmarks...)

Some work to do

v Complete the CPU benchmarks on the large dataset and test the weak scaling of the code

v Finalize the paper on the GPU enabling of the code

v Work on the AMD support of the code, but we miss required libraries such as a distributed FFT

v GPU porting of the weighting and uv-tapering for scientific purposes

Conclusions

• RICK is a code for enabling radio astronomy imaging on accelerators

• It is now capable of fully running on Nvidia GPUs thanks to the NCCL Reduce and the cuFFTMp

• A paper will soon be submitted with the presentation of the new updates and the benchmarks result on
Leonardo (CINECA)

• More work is still required for the AMD GPU offloading

