
BrahMap
An optimal map-making solution for the future CMB experiments

Avinash Anand1 and Giuseppe Puglisi2
1University of Rome “Tor Vergata”, 2University of Catania

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

 Spoke 3 Monthly WP1-2 Meeting | February 19, 2024

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Map-making for CMB experiments

- Future CMB experiments will target the B-mode polarization of CMB

- A low SNR and a wide frequency range of foreground contamination requires the

deployment of O(3)-O(5) detectors sampling at very high frequency

- Data acquisition: ~250 TB from space to ~10 PB from ground-based experiments

- First step of analysis: Reduction of time-series data to sky maps aka Map-making

- Map-making goals:

- Reduction of an enormous amount of data in a reasonable amount of time

- Mitigation of instrumental systematics

- Removal of both un-correlated and correlated noise

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Map-making for CMB experiments
- Data model for CMB signal

- dp,t → Signal measured by the detector - Ip , Qp , Up → CMB stokes parameters

- 𝜙t → Detector polarization angle - nt → Un-correlated and correlated noise contribution

- Writing data model in matrix equation form

- d → signal vector, P → pointing matrix, s → sky map, n → noise vector

- Need to solve the equation for sky map, s

………. (1)

………. (2)

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Map-making for CMB experiments
- Generalized least-square solution (GLS)

- A maximum-likelihood solution

- N → Covariance matrix of the noise time stream

- Destriper solution
- A map-making solution that takes explicitly into account the 1/f noise

- F is the matrix that contains the baseline information, and
- Assumes 1/f noise contribution to be constant in a baseline of a given length

- For the future CMB experiments, these matrices will be huge → O(109x109) and above
- Map-making with entire dataset will take 200,000 - 50,000,000 CPU hours

………. (3)

………. (4)

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

- A modular and object-oriented framework based on COSMOMAP21,2

- Python 3 interface with bindings for compute intensive parts written in C++

- Optimization to squeeze the most out of the supercomputing resources
- Scalable across multiple computing nodes
- Offloading the computations to multiple GPUs
- Utilize the capabilities of high-performance matrix-algebra libraries (e.g. MAGMA)

BrahMap: A scalable map-making framework

1Puglisi, G., et al. “Iterative map-making with two-level preconditioning for polarized cosmic microwave background data sets - A worked example for ground-based
experiments.” A&A, 618 (2018) A62, https://doi.org/10.1051/0004-6361/201832710
2https://github.com/giuspugl/COSMOMAP2

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

- Conversion of codebase from Python 2 to Python 3
- Automated conversion using Python 2to3 tool followed by manual debugging and validation

- Writing the compute extensive parts to C++
- To control hardware specific low level optimization
- To use generic data types to using templates (to use generic Python data types)

- Writing Python binding for C++ codes using pybind11
- pybind11 is a header-only lightweight library, with no dependencies
- pybind11 can be shipped with Python package
- Supports C++11 and STL out of the box
- Compatible with all major compiler

BrahMap: Derivation from COSMOMAP2

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

BrahMap: Object oriented framework
- Process the pointing information

proc_points = ProcessTimeSamples(pixs=pointings, npix=npix,
 pol=3,phi=pol_angles)

npix_new, _ = proc_points.get_new_pixel

- Create the pointing matrix as Sparse linear operator
P = SparseLO(n=npix_new, m=nsamp, pix_samples=proc_points.pixs, pol=3,
 angle_processed=proc_points)

- Make a noise covariance matrix
inv_N = BlockLO(blocksize=blocksize, t=inv_sigma2, offdiag=False)

- Make the Jacobi-preconditioner
Mbd = BlockDiagonalPreconditionerLO(CES=proc_points,

 n=npix_new, pol=3)

- Solve for the sky map using conjugate gradient
method (GLS solution)

A = P.T * inv_N * P
b = P.T * inv_N * tod_array
map_out = scipy.sparse.linalg.cg(A, b, M=Mbd)

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

BrahMap: Modular framework
- Multiple definitions for underlying methods, opening the

possibility of writing compute extensive parts in C++ for
both CPUs and GPUs independently

template <typename dtype_int, typename dtype_float>
py::array_t<dtype_float> SparseLO_rmult(int Nrows, int Ncols,

 py::array_t<dtype_int> pixs,
 py::array_t<dtype_float> vec) {
 py::array_t<dtype_float> x_arr({Ncols});
 auto x_arr_ptr = x_arr.mutable_data();
 auto pixs_ptr = pixs.template unchecked<1>();
 auto vec_ptr = vec.template unchecked<1>();

 for (ssize_t idx = 0; idx < Nrows; ++idx) {
 if (pixs_ptr[idx] == -1) continue;
 x_arr_ptr[pixs_ptr[idx]] += vec_ptr[idx];
 } // for
 return x_arr_ptr;
} // SparseLO_rmult()

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

- Runtime comparison

- BrahMap: Python only version
Scaling with the size of dataset

BrahMap: Code performance

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

- Runtime comparison

- BrahMap: Python binding with C++
10 to 12 times faster

- litebird_sim: make_binned_map()
routine
17 to 25 times faster

- litebird_sim: make_destriped_map()
routine
12 to 14 times faster

BrahMap: Code performance

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

- Runtime comparison

- BrahMap: Python binding with C++
10 to 12 times faster

- litebird_sim: make_binned_map()
routine
17 to 25 times faster

- litebird_sim: make_destriped_map()
routine
12 to 14 times faster

BrahMap: Code performance

BrahMap is still slower than other map-makers.

Reason: Inefficient loop structure, no vectorization
for (ssize_t idx = 0; idx < Nrows; ++idx) {
 if (pixs_ptr[idx] == -1) continue;
 x_arr_ptr[pixs_ptr[idx]] += vec_ptr[idx];
} // for

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

- Signal only data
- Time-ordered

data (TOD)
obtained by
scanning the
CMB sky

- Signal + white noise
- Signal + 1/f noise

BrahMap:
Validation

rel. diff. =
output_map -input_map

input_map

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

- Signal only data
- Signal + white noise

- TOD obtained by
scanning CMB
sky + 0.01 uK
white noise level

- Signal + 1/f noise

BrahMap:
Validation

output_map -input_map

input_map
rel. diff. =

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

- Signal only data
- Signal + white noise
- Signal + 1/f noise

- TOD obtained by
scanning CMB
sky + 1/f noise at
0.01 uK level with
 fknee = 20 mHz

- 100 sec long baseline
 for destriper

BrahMap:
Validation

output_map -input_map

input_map
rel. diff. =

Missione 4 • Istruzione e Ricerca ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

- BrahMap offers object-oriented modular map-making framework
- Serial performance comparable to the existing codes, with possibility of further improvements
- Code repository: https://github.com/anand-avinash/BrahMap
- Documentation: https://anand-avinash.github.io/BrahMap

- Address the vectorization in the loop structures
- Take advantage of parallelization across multiple CPUs using MPI+OpenMP
- Offload the heavy computations to GPUs
- Implementing the cross-platform matrix equation solvers using MAGMA library

BrahMap: Conclusion and future outlooks

