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Emulating the
interstellar medium chemistry
with neural operators

a recap & update on the project:

* why should we focus on the chemistry of the ISM?
* what are the problems for numerical solvers?
* which are the ways to speed-up our computations?
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Example: breakdown of a Molecular Cloud

physical CPU cost
processes per step

(self)-gravity AD = 47} 0 ~10%

hydro Z/[ L VF=S ~15%

Myic ~ 10°Mg

radiation jy/c + ﬁﬁ[y =9, — kI, ~20%

H, column density

* about 900-60 mpc ~50%

chemistry

spatial resolution

« about 10° finite
(AMR) elements

e about 0.4 MCPUhr
for 3 Myr evolution

non-equilibrium ISM chemistry plays a key role
In astrophysical and cosmological studies



Solving the chemistry in the InterStellar Medium
 photo-chemistry/CR

| 2-body reactions

By (1,)n;

robust implicit solvers are needed

* CPU cost s high
 load balancing can be spoiled
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to follow up to H, formation

can we use fast
emulators instead?




Physics-Informed Neural Networks: a sketch
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to approximate the ODE solution

L(OF) < e=unn(x,07) = u(x)

e strategy: minimize the loss function
loss function to train the NN

L(0) = |D(unn(x,0)) — f(x)] + [B(unn(x,0)) — g(x)|

Physics-Informed « NN built to be differentiable at machine precision
part of the NN  evolution equations directly embedded in the loss



Performance of a PINN emulator
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Changing gears: Deep Neural Operator

Branch net |

n(t,IC, F)
T(t,1C, F)

main differences wrt the PINN model

* DeepONet is a implementation UAT for operators
* the emulator is data driven
e shape and intensity of the radiation Field can change



DeepONet: performance & validation

relative error
speed up
training time

~ (.01
X 128
~ 40 GPUhr

I.e. 10x more precise at x40
less cost wrt the PINN,
which did not allowed for a
varying radiation field

very adaptable: validation with PDR
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Conclusions:

Decataldo+2020

Branca & Pallottini 2023

ISM chemistry is key in
many astrophysical &
cosmological problems
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PINN driven emulators are |
an interesting alternative ]‘
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