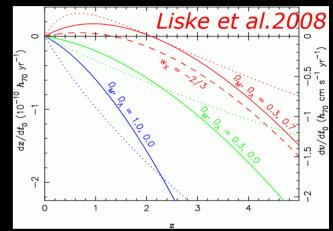
Watching the Universe's Acceleration Era with the SKAO

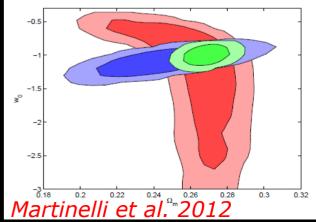
Carlos.Martins@astro.up.pt

Mind Your Cosmological Priors

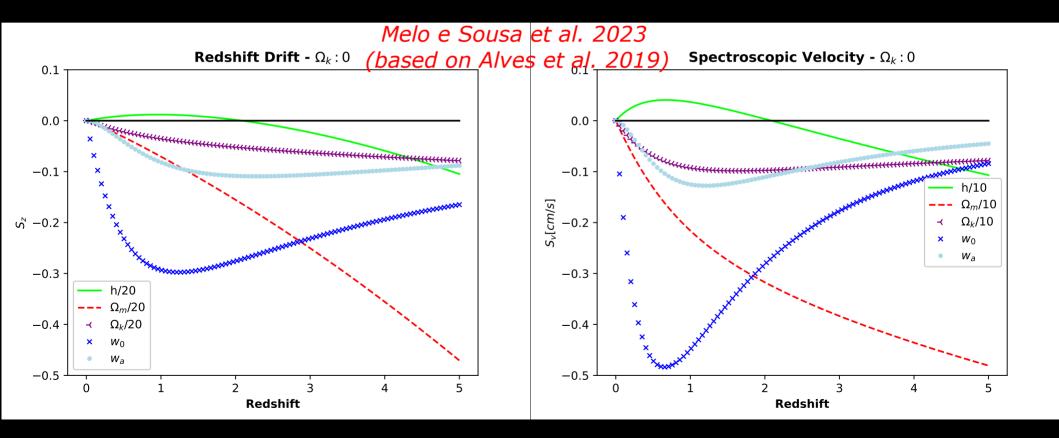
into all the data. If w = T, then hat ACDM S. ർ S ມ .eteb ant lie ot the 5 // M 1011. ן¥Ω^{≈ ג}

The Redshift Drift


A direct non-geometric model-independent measurement of the universe's expansion history [Sandage 1962]


- Watching the universe expand in real time!
- Independent of gravity, geometry or clustering
- Not mapping (present-day) past light-cone, but directly comparing different past light-cones

$$\dot{z} \equiv \frac{\mathrm{d}z}{\mathrm{d}t_{\mathrm{obs}}}(t_0) = (1+z)H_0 - H(z).$$


ELT flagship science driver (for z>2) [Liske et al. 2008], unique tool to close consistency loop and break parameter degeneracies

- SKAO can cover z<1 [Klockner et al. 2015, ...]
- In practice one measures a spectroscopic velocity Martinelli et al.

Cosmological Parameter Sensitivity (for a CPL fiducial model)

Real-time Cosmography

First and second redshift derivatives are powerful test of the Λ CDM paradigm; cosmographic approach useful here [Martins et al. 2016]

$$Z_{1}(z) = \frac{1}{H_{0}} \frac{dz}{dt_{0}} = 1 + z - E(z)$$

$$Z_{2}(z) = \frac{1}{H_{0}^{2}} \frac{d^{2}z}{dt_{0}^{2}} = \frac{1 + q(z)}{1 + z} E^{2}(z) - E(z) - q_{0}(1 + z)$$

$$\frac{dZ_{1}(z)}{dz} = 1 - E(z)'$$

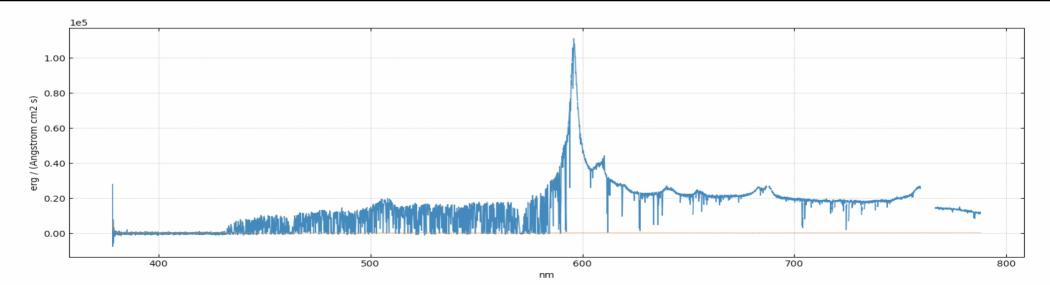
$$Z_{1} = -q_{0}z + O(z^{2})$$

$$Z_{2} = j_{0}z + O(z^{2})$$

$$\frac{dZ_{1}(t_{0}, z)}{dz} = -q_{0} + (q_{0}^{2} - j_{0})z + O(z^{2})$$

Assuming specs discussed in [Klockner et al. 2015], SKAO redshift drift measurements can reach $\sigma_{q0} \sim 0.006$ and $\sigma_{j0} \sim 0.13$ [Martins et al. 2016]

- Optimal way to measure q₀ with both accuracy and precision, which is not possible with traditional distance indicators [Neben & Turner 2013]
- A key consistency test: j(z)=1 at all redshifts for a flat Λ CDM universe
- More broadly, a positive drift implies SEC violation, hence dark energy


The ESPRESSO Redshift Drift Experiment

Current limits 1000x larger than expected signal, and systematics-dominated

- [Darling 2012] in the radio at z<0.7, [Cooke 2020] in the optical at z>2

ESPRESSO can improve this by a factor ${\sim}10$ with an experiment time of 1 year and an observation time of 40h for 2 QUBRICS 'superbright' QSOs

- Test and optimise methodology with real data, test instrument stability
- Two independent experiments, also 'zeroth epoch' for ANDES (calibration permitting)

SKA Forecast Assumptions

Only available estimate of SKA redshift drift sensitivity is [Klockner et al. 2015]

- Observe HI signal of ca. 10^7 galaxies up to $z \sim 1$ at 2+ different epochs
- Observation time ca. 0.5 years, experiment time ca. 12 years expect $\Delta v \sim 0.1$ Hz
- Only feasible with full SKA (as it was in 2014)
- Sensitivity, number counts, hardware, systematics (e.g. observatory motion) etc.

These forecasts are simplistic and out of date, it would be good to improve them to ELT level.

- Can someone do simulations?
- Good topic for someone's thesis?
- For now, proceed with these...

What upper limits can we get now? Existing ones can be improved!

Relevant Phi in the Sky expertise

OF SCIENCE

PROCEEDINGS

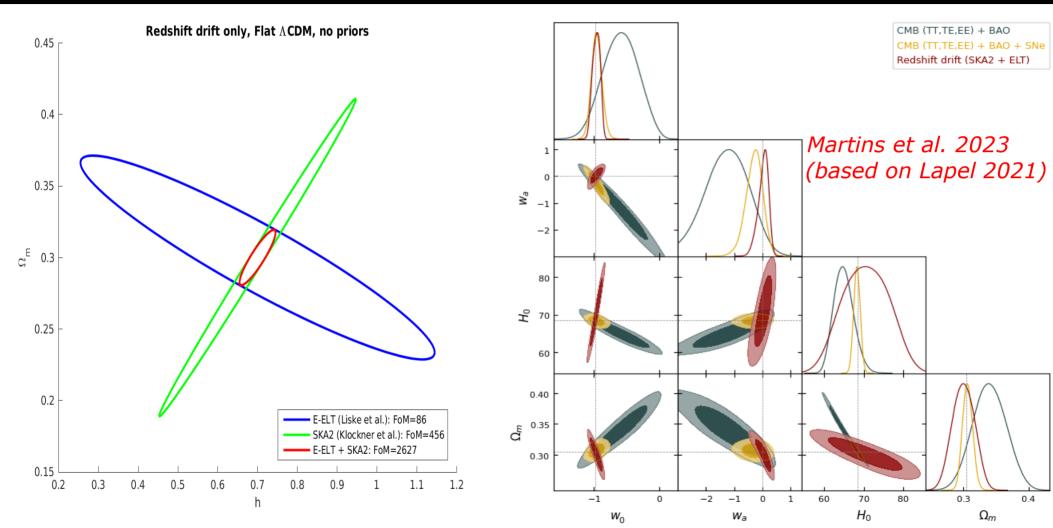
Real time cosmology - A direct measure of the expansion rate of the Universe with the SKA

Hans-Rainer Klöckner^{*1}, Danail Obreschkow², Carlos Martins³, Alvise Raccanelli⁴, David Champion¹, Alan Roy¹, Andrei Lobanov¹, Jan Wagner¹, 5, Reinhard Keller¹

¹Max-Planck-Institut für Radioastronomie (MPIfR), Germany; ²The University of Western Australia, ICRAR, Australia; ³Centro de Astrofísica da Universidade do Porto, Portugal; ⁴Department of Physics & Astronomy, Johns Hopkins University, Caltech, & JPL, USA; ⁵KASI KVN, Korea E-mail: hrk@mpifr-bonn.mpg.de

Available SKA Forecasts

Under previous assumptions, competitive probe of low-z accelerating universe


- MCMC in [Rocha & Martins 2022]
- FMA in [Marques et al. 2024]
- Both cosmograpy and specific cosmological models
- Latter code publicly available

Can think of measuring the drift of the drift, look at spatial variations, etc

		$\sigma_h = 0$			$\sigma_h = 0.05$			$\sigma_h = 0.1$		
	Parameter	$z \le 0.3$	$z \le 0.5$	$z \leq 1.0$	$z \leq 0.3$	$z \leq 0.5$	$z \leq 1.0$	$z \leq 0.3$	$z \leq 0.5$	$z \leq 1.0$
ΛCDM	$\operatorname{FoM}(w_0,w_{\mathrm{a}})$	95	139	252	48	62	110	44	50	77
	$ ho(w_0,w_{\mathrm{a}})$	-0.624	-0.803	-0.905	-0.226	-0.433	-0.761	-0.156	-0.287	-0.609
	$\sigma(w_0)$	0.038	0.034	0.024	0.054	0.051	0.040	0.062	0.062	0.056
	$\sigma(w_{\mathrm{a}})$	0.230	0.214	0.207	0.352	0.309	0.285	0.376	0.349	0.316
Freezing	${ m FoM}(w_0,w_{ m a})$	118	183	352	50	71	139	44	53	91
	$ ho(w_0,w_{\mathrm{a}})$	-0.614	-0.805	-0.934	-0.221	-0.432	-0.798	-0.154	-0.288	-0.647
	$\sigma(w_0)$	0.035	0.033	0.027	0.048	0.045	0.035	0.055	0.055	0.048
	$\sigma(w_{\mathrm{a}})$	0.172	0.151	0.147	0.325	0.254	0.205	0.365	0.317	0.245

		$\sigma_h = 0$			$\sigma_h = 0.05$			$\sigma_h = 0.1$		
	Parameter	$z \le 0.3$	$z \le 0.5$	$z \leq 1.0$	$z \le 0.3$	$z \le 0.5$	$z \leq 1.0$	$z \le 0.3$	$z \le 0.5$	$z \leq 1.0$
n=5	$\operatorname{FoM}(q_0,j_0)$	54	90	117	4	7	11	2	3	4
	$ ho(q_0,j_0)$	-0.988	-0.979	-0.969	-0.944	-0.954	-0.940	-0.891	-0.935	-0.935
	$\sigma(q_0)$	0.042	0.029	0.024	0.112	0.098	0.079	0.154	0.152	0.132
	$\sigma(j_0)$	1.226	0.801	0.641	2.736	2.016	1.445	3.196	2.900	2.182
n=4	$\operatorname{FoM}(q_0, j_0)$	37	54	245	4	5	18	2	2	6
	$ ho(q_0,j_0)$	-0.983	-0.986	-0.956	-0.940	-0.936	-0.942	-0.890	-0.908	-0.938
	$\sigma(q_0)$	0.045	0.039	0.016	0.112	0.102	0.068	0.156	0.151	0.124
	$\sigma(j_0)$	1.422	1.203	0.368	2.736	2.365	1.063	3.200	2.969	1.822
n=3	$\operatorname{FoM}(q_0, j_0)$	83	259	845	4	15	81	2	4	25
	$ ho(q_0,j_0)$	-0.986	-0.959	-0.895	-0.959	-0.948	-0.933	-0.925	-0.943	-0.939
	$\sigma(q_0)$	0.034	0.017	0.009	0.123	0.076	0.041	0.177	0.141	0.077
	$\sigma(j_0)$	0.917	0.355	0.129	2.797	1.207	0.365	3.706	2.171	0.644
n=2	$\operatorname{FoM}(q_0,j_0)$	788	1508	4050	42	128	652	11	37	236
	$ ho(q_0,j_0)$	-0.917	-0.865	-0.805	-0.943	-0.937	-0.950	-0.944	-0.942	-0.963
	$\sigma(q_0)$	0.010	0.007	0.005	0.056	0.038	0.023	0.108	0.072	0.043
	$\sigma(j_0)$	0.138	0.078	0.033	0.562	0.259	0.092	1.081	0.483	0.160

Synergies: ELT + SKAO

Let's do it!