Cosmic Radio Dipole Multi-survey estimation

Lukas Böhme, Dominik Schwarz Bielefeld University SKA Cosmology SWG, Porto, 17.01.2024

CMB Dipole

- First noted in 1967/69 [1]
- Clear result: 1994 COBE [2]
- Assumption: Due to motion of the Solar System in relation to CMB rest-frame
- On the order of $10^{\rm -3}$

 $v_{\rm CMB} = 369.82 \pm 0.11 \, {\rm km \, s^{-1}}$ [3]

[1] Partridge and Wilkinson, 1967[2] Fixsen et al. 1994[3] Planck Collaboration 2020

Cosmic Radio Dipole

- $\overline{z} \approx 1$
- $d_{\rm radio} = d_{\rm kin} + d_{\rm matter}$
- $d_{
 m matter}$ expected to be small
- $d_{\rm kin}$ due to Doppler shift & Aberration

Doppler shift

• Change in frequency

> Change in flux density ($S \propto \nu^{\alpha}$)

Aberration

• Change of observed angle towards direction of motion ("Clustering")

Kinetic dipole in radio source counts

Counts-in-Cell

$$\frac{dN}{d\Omega}|_{\rm obs} = \frac{dN}{d\Omega}|_{\rm rest}(1 + d\cos\theta)$$

$$d_{exp} = (2 + x(1 + \alpha)) \frac{v_{\rm CMB}}{c} \approx 0.5 \times 10^{-2} \ {\rm [1]}$$
 Radio survey dependent

> 0.5% effect at max. and minimum

Simulated randoms with dipole signal

[1] Ellis and Baldwin, 1984

Current measurements

TGSS [1]

 Open questions: 		6000-	
 Frequency dependence? 			
 Excess compared to CMB? 	n/s)	5000 -	
	ity (kr	4000 -	
	veloc	3000 -	
	Dipole	2000 -	
		1000-	
[1] Siewert et al. 2021 [2] Wagenveld et al. 2	.023		

[3] Dam et al. 2023

Negative binomial distr.

• Negative binomial distr. gives best description of data (prev. talk by Morteza)

•
$$N = \sum_{j=1}^{S} C_j$$

- N- Count of radio sources in any cell
- S Poisson distr. number of physical objects
- C_j #of components of object j in S, distr. logarithmic with p

$$\Rightarrow P_{\text{NB}}(k) = \binom{k+r-1}{k} p^k (1-p)^r \qquad p = \frac{\lambda}{\sigma^2}, \ r = \frac{p\lambda}{1-p}$$

Data used

0.2

0.0

20

15

25

RACS-low ($S_{\min} = 15 \text{mJy}, 888 \text{MHz}$)

³⁰ ³⁵ ⁴⁰ Counts-in-Cell

45

50

Estimator for radio source counts

• Likelihood for the negative binomial distr. with dipole given by:

$$L(n|\mathbf{d}) = \prod_{i} \binom{n_i + r(\mathbf{d}) - 1}{n_i} p^{n_i} (1-p)^{r(\mathbf{d})}$$

$$r(\mathbf{d}) = \frac{1}{n_i} p^{n_i} (1-p)^{r(\mathbf{d})}$$

- Minimise the negative log-likelihood with Bilby [1,2]
 - CMB dipole direction (most studies confirm this) • Assume:
- Multi-survey estimation:
 - Simply add log-likelihoods to obtain a combined estimate
 - Same underlying dipole in all surveys • +Assume:

[1] Ashton et al. 2019 [2] Romero-Shaw et al. 2020

Dipole measurements from LoTSS-DR2 In CMB direction (2023)Combined result in 5σ tension to CMB Survey vDam+ (km/s)LoTSS-DR2 1087^{+439}_{-450} RACS-low 1179^{+209}_{-214} RACS-mid 599^{+267}_{-257} NVSS 866 ± 257 VLASS 955^{+393}_{-392} VLASS 941^{+123}_{-126} Combined Wagenveld+ (2023)1500175012501000 Velocity (km/s)

Conclusion, future prospects

- Individual surveys: weakly reject CMB, strongly reject TGSS, no frequency dependence
- Joint estimate raises significant tension with CMB
- Consistent with previous measurements
- velocity • Future large area sky surveys: LoTSS-DR3, LoLSS-DR2, RACS-high, RACS-low2, **SKA**
- Wide-field spectroscopic follow ups: WEAVE-LOFAR
- More thorough analysis of systematics
 - [1] Siewert et al. 2021 [2] Wagenveld et al. 2023 [3] Dam et al. 2022

(km/s)

Dipole

