Hydrogen intensity mapping with MeerKAT observations: optimising the contaminant subtraction

Isabella Paola Carucci

Funded by the European Union NextGenerationEU SKA Cosmology SWG Annual Meeting 16th January 2024

The present: an SKA cosmology survey precursor with MeerKAT

- *MeerKLASS: MeerKAT Large Area Synoptic Survey* (> 50 members <u>Santos et al., arXiv:1709.06099</u>)
- Aim: Cosmology (HI intensity mapping) but commensal with lots of other science
- Use single dish data for cosmology and interferometer data for a continuum galaxy survey

L-band:

- 900-1670 MHz (z<0.58)
- ~ 100 hours observed
- MeerKLASS+ proposal submitted: 2,000 h over • 5,000 deg2 (continuum: 9 uJy rms, 5")

UHF band:

- 580 MHz-1015 MHz (0.40 < z < 1.45) •
- ~ 120 hours observed
- Project "approved": 2,500 hours over 10,000 deg² (continuum: 25 uJy rms, 13'')

Slide: Mário Santos from yesterday!

a collective effort

I am going to focus on the cleaning and report what has been (partially) going on within the Foreground&PowerSpectrum working Group of MeerKLASS:

Alkistis Pourtsidou, Jingying Wang, José Luis Bernal, Keith Grainge, Laura Wolz, Mario Santos, Marta Spinelli, Matilde Barberi Squarotti, Mel Irfan, Steve Cunnington, Zé Fonseca, ...

Outline

- strategy
- detection in X-corr with galaxies

• It's not only "foregrounds": very short overview of the contaminant subtraction problem in HI IM

Blind Source Separation methods as cleaning

• Testing the methods with data to reproduce our

ongoing work

HI intensity mapping buried under the contaminants

16th January 2024

Filtering or 'avoiding' the contaminants is not an option

(Unless you are Aishrila, Sourabh, Mario, Laura, Zhaoting and work with Mightee data)

Filtering or 'avoiding' the contaminants is not an option for cosmo science

Blind Source Separation algorithms

The separation of a set of source signals (contaminants) from a set of mixed signals (the maps), with little or no info about the source signal or the mixing process.

Cunnington+ 2021

Different scales need different care

16th January 2024

Pilot survey data (2019):

Can we use this cross-corr detection as a benchmark to learn something about our cleaning strategy?

Preliminary

Re-analyis of 2019 data

1. PCA-informed pixel flagging

component 1

Preliminary

component 1

original data cube

Isabella P. Carucci

Preliminary

See Irfan+ 2022 for discussion on how to relate that first mode to the galactic synchrotron

Re-analyis of 2019 data

- PCA-informed pixel flagging 1.
- Keep *bad* channels 2.
- 3. No re-smoothing

(ZHW) 1100-

Frequency 1300

1400

-20

-40

 P_{ν} (dB)

Preliminary

Re-analyis of 2019 data

- 1. PCA-informed pixel flagging
- 2. Keep *bad* channels
- 3. No re-smoothing
- Going multiscale 4.

Preliminary

Work led by Matilde Barberi Squarotti

Very Preliminary

Summary

- We are detecting (again!) the cross signal with WZ galaxies to test different pre-processing steps and cleaning algorithms
- We did learn things!
- PCA /SVD is still our best friend

Getting ready for the SKAO HI IM science

- Separating scales for the cleaning is more efficient at reducing the cube variance (multiscale cleaning)
- Even a PCA/SVD run should not be applied as a black-box