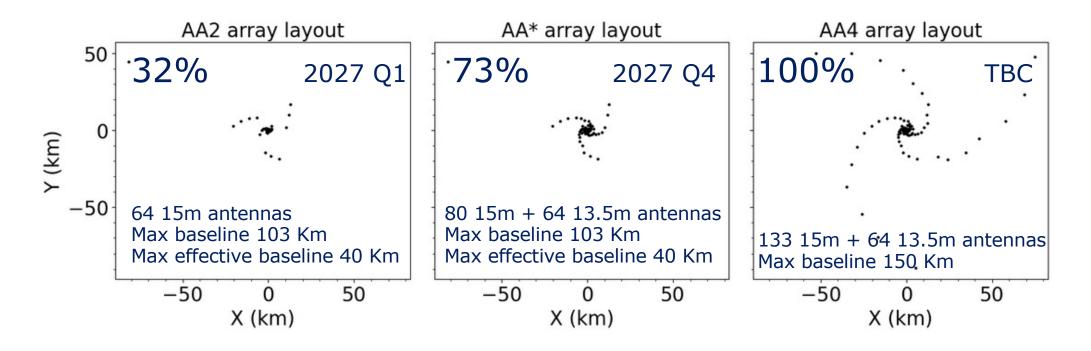


SKA Observatory project update

Dr A. Bonaldi, SKAO Project scientist

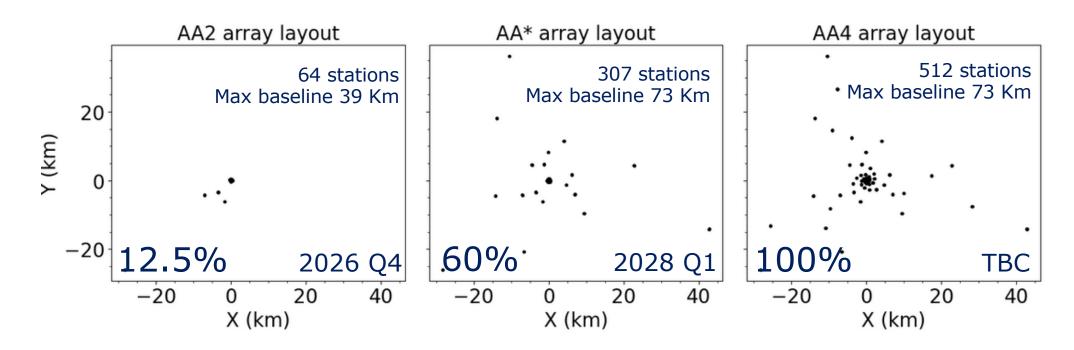
Cosmology SWG meeting, Porto, 15/1/24

Construction Strategy


- **Target**: build the SKA Baseline Design: AA4)
- Not all funding yet secured, therefore following Staged Delivery Plan (AA*)

Milestone Event		SKA-Mid	SKA-Low
AA0.5	4 dishes 6 stations	2025 Q1	2024 Q4
AA1	8 dishes 18 stations	2026 Q1	2025 Q4
AA2	64 dishes 64 stations	2027 Q1	2026 Q4
AA*	144 dishes 307 stations	2027 Q4	2028 Q1
Operations Readiness Review		2028 Q1	2028 Q2
End of staged delivery programme		2028 Q3	2028 Q3
AA 4	197 dishes 512 stations	TBD	TBD

First data release to the community expected in 2026/27 (for science verification)


AA* vs AA4 – SKA Mid

Staged delivery memo, python package and Jupiter notebook at https://www.skao.int/en/ska-subarrays

AA* vs AA4 – SKA Low

Staged delivery memo, python package and Jupiter notebook at https://www.skao.int/en/ska-subarrays

SKA-Low sensitivity calculator

SKAO Se	nsitivity Calculator	MID	LOW	0	
Subarray Confi AA4 Right Ascensio 00:00:00.0	▼	Number of Stations 512 Declination * 00:00:00.0			More subarrays will be added as we come up subarray templates
Continue	um		~		
Zoom W	indow		~		Web interface at <u>https://sensitivity-</u>
RESET			CALCULATE		<u>calculator.skao.int/low</u> .
	eoretical sensitivity is computed using o procedure described in Sokolowski et a		pendent SEFD values		

© SKAO 2023 | Version 1.0.2

SKA Low sensitivity calculator

Continuum

Integration Time * 1	hours
Central Frequency *	
200	MHz
Continuum Bandwidth *	
300	MHz
Image Weighting *	

Results
Weighted continuum sensitivity
82.48 uJy/beam (15.18)†
Continuum confusion noise
1.04 uJy/beam
Total continuum sensitivity
82.49 uJy/beam
Continuum synthesized beam-size
3.9" x 3.0"
Continuum surface-brightness sensitivity
214.38 K

† Weighting correction factor (30% bandwidth)

~

SKA Mid sensitivity calculator

KAO Sensitivity	Calculator	MID LOW Advanced: OFF ON ON		
Subarray Configuration *	Number of SKA antennas	Number of MeerKAT	antennas	
AA4	133		\$	
Right Ascension *	Declination *	Elevation *	degrees	
13:25:27.60	-43:01:09.00	45		
Observing Band * Band 2 (0.95 - 1.67 GHz)	Weather 10	(Precipitable Water Vapour) *	≎ mm	

More subarrays will be added as we come up subarray templates

Web interface at <u>https://sensitivity-calculator.skao.int/mid</u>.

SKA Mid sensitivity calculator

- First release, feedback welcome!
- Modes available: continuum and spectral line

Continuum

Supplied * **Integration Time**

Integration Time * S 🔻

GHz -

Central Frequency * 1.31

Continuum Bandwidth * GHz -0.72

600

Number of sub-bands

Spectral Resolution 13.44 kHz (3.1 km/s)

Spectral Averaging *

Effective resolution 13.44 kHz (3.1 km/s)

Image Weighting * Uniform

Tapering * No tapering

Results

Weighted continuum sensitivity 49.62 uJy/beam (14.04)† Continuum confusion noise 0.00 Jy/beam Total continuum sensitivity 49.62 uJy/beam Continuum synthesized beam-size 0.194" x 0.181" Continuum surface-brightness sensitivity 1007.90 K Weighted spectral sensitivity 5.60 mJy/beam (6.84)‡ Spectral confusion noise

0.00 Jy/beam Total spectral sensitivity 5.60 mJy/beam Spectral synthesized beam-size 0.325" x 0.297" Spectral surface-brightness sensitivity 41230.08 K

† Weighting correction factor (30% bandwidth) ‡ Weighting correction factor (single channel)

Where you find these tools: on skao.int/science users

SKAO Science Users

These webpages are intended for the use of professional astronomers. The main information can be accessed through the various cards below.

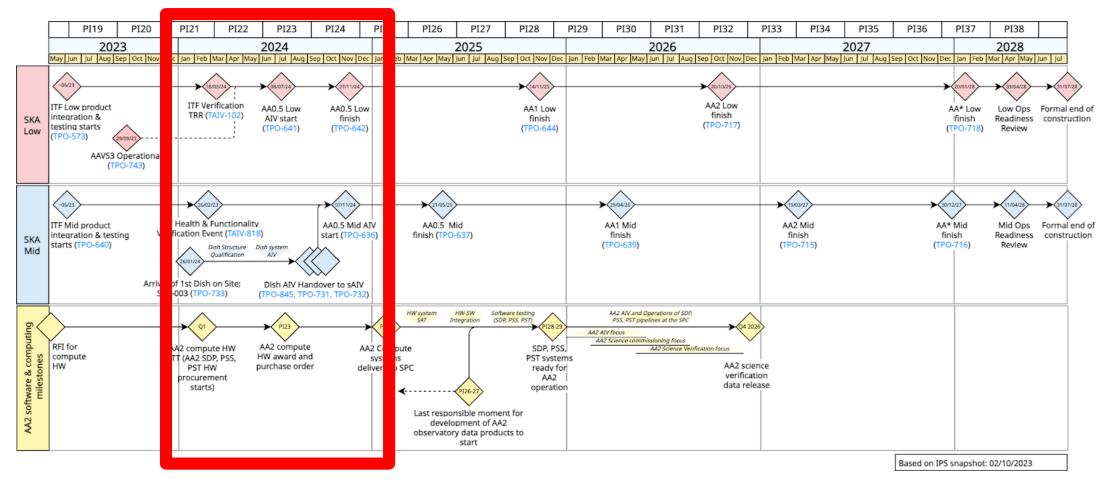
SKA Telescope specifications

Technical descriptions of the SKA-Low and SKA-Mid telescope capabilities

Scientific timeline

SKA science timeline, including milestones for science verification, shared-risk observing, and early operations, along with array capabilities

SKA tools


List of tools and calculators for the science users

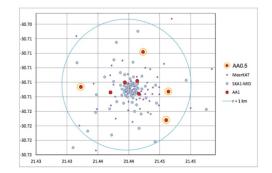
Science

community

Our science community is organised in science working groups

High-Level Project Milestones

Focus on Array Assembly (AA)0.5



SKAO Construction Status (end Oct 2023)

- 28 months into ~7 year construction phase: 75 contracts awarded; €617M total value.
- Majority of remaining contracts to be placed by end 2023.
- Progress: 18.9% complete, compared with 21.4% planned and 18.8% spent (i.e. behind schedule but on budget).
- SKA-Low and Mid infrastructure works well underway
- AA0.5 components either delivered or in manufacture

Path to interferometry: What *is* Array Assembly (AA)0.5?

- Deployment of minimal (4 dish/6 station) short-baseline arrays on-site as early as possible
- Primary goal: end-to-end test of interferometry
 - Tied-array beamforming is secondary goal
- (Almost) all sub-systems (including control and data processing software)
 - Includes Dish/Station (cannot be tested in a lab environment)
- Verify fundamentals of system performance
 - in a realistic operating environment (Radio Frequency Interference, wind, temperature, ...)
- Test interfaces
- Develop AIV (Assembly, Integration and Verification), Commissioning, Operations teams and procedures
- Identify failures to meet requirements, lack of reliability
- Reduce risk by fixing problems as soon as possible, ideally before mass production
- Verify the supply chain

Data Processing Pipelines for AA2 and beyond

Two important goals:

- Immediate: make the current self-calibration and imaging pipelines work at AA2 scale on the anticipated computing platforms.
- Longer-term: plot a plausible path to scale to AA* and the Design Baseline.


SDP: scalability of calibration and imaging

Slide credit: Shan Mignot

Execution metrics (II)

resource usage recordings for the image_1 step (WSClean)

SKAO Construction Status: Mid

SKAO Construction Status: Mid

• First four AA0.5 production dishes nearing completion and shipping to site

SKAO Construction Status: Low

• "Fly" camp (103 beds) complete to support build of full camp (first beds by late October)

SKAO Construction Status: Low

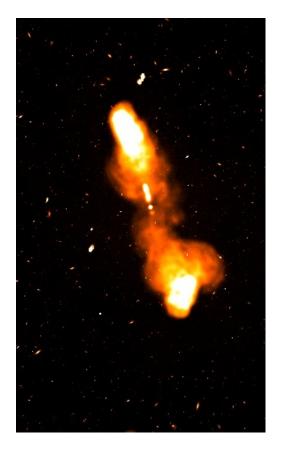
- "Turkey's nests" (water dams), borrow pits and tracks in progress
- Mesh, fibre and power cables delivered to on-site laydown yard

SKAO Construction Status: Low

• AAVS3 deployed using SKAO staff, in lead-up to full deployment

Science Data Challenges

"The purpose of SDCs is to prepare the astronomical community, and SKAO itself, for the novel, yet challenging, nature of SKA data"

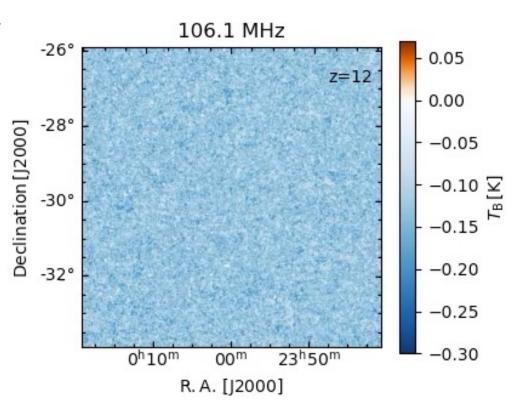

Science Data Challenges

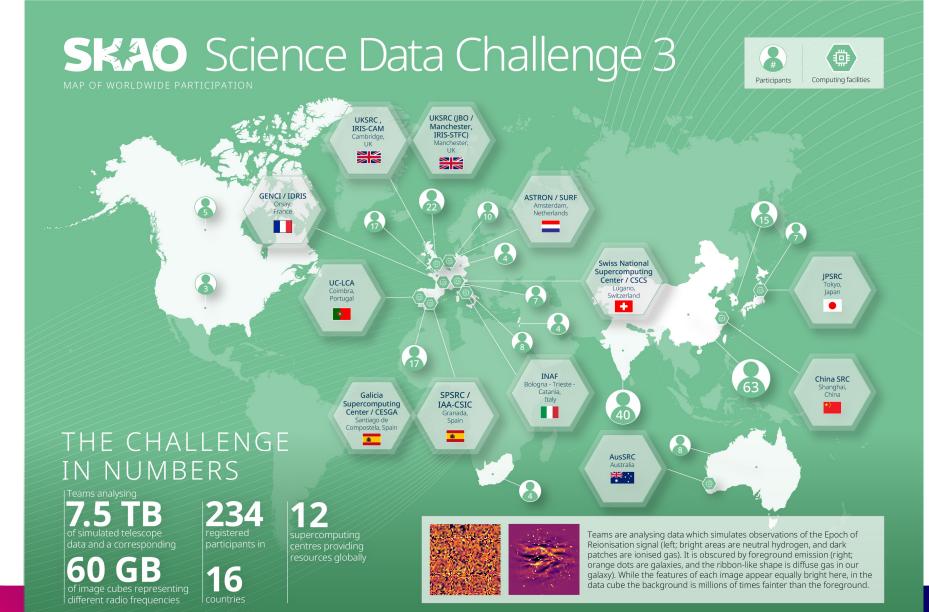
Primary goals:

- Familiarise the science community with size and complexity of SKA data
- Support the **design** of future SKA observations
- Drive the development of **data analysis techniques**

Additional benefits:

- Familiarise the science community with **data access models**
- •Test SKA Regional Centre prototyping
- •Encourage best practices for **Open Science** and **reproducibility**




DC data products are made publicly available for the long term

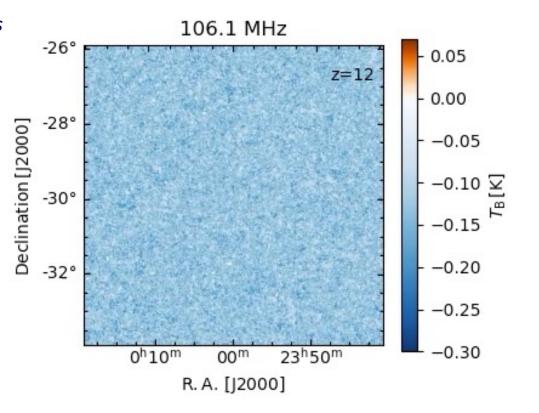
Science Data Challenge 3

Developed in collaboration with SKA EoR SWG members

- SDC3a "Foregrounds" (SDC3a; SWG Coordinators: C. Trott, V. Jelic)
 - Foreground removal exercise
 - SDC3a submission deadline 30th Oct 2023
- SDC3b "**Inference**" (SDC3b; SWG Coordinators: A. Mesinger, G. Melema)
 - Extraction of **cosmological parameters**
 - SDC3b launching Q1 2024

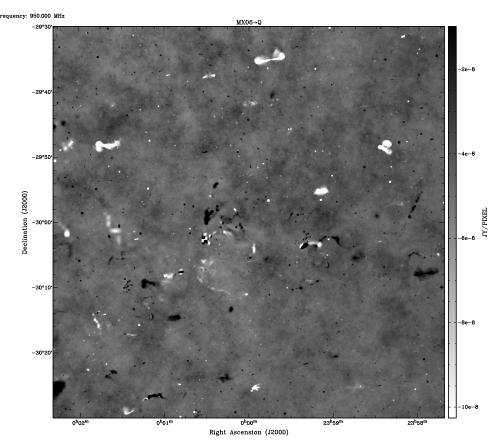
SCD3 foregrounds And the winner is...

- 20 submissions from teams around the world
- Score computed on the accuracy of EoR power spectrum and associated error bars
- Congratulations to team HIMALAYA (China, School of Physics and Astronomy, Sun Yat-Sen University)


HIMALAYA DOTSS-21cm_ML-GPR DOTSS-21cm_Advanced_ML-GPR **ERWA** DOTSS-21cm_Avoidance Shuimu-Tianlai Wizards_of_Oz_3D Akashganga REACTOR SKACH

Science Data Challenge 3

Developed in collaboration with SKA EoR SWG members


- SDC3a "Foregrounds" (SDC3a; SWG Coordinators: C. Trott, V. Jelic)
 - Foreground removal exercise
 - SDC3a submission deadline 30th Oct 2023
- SDC3b "**Inference**" (SDC3b; SWG Coordinators: A. Mesinger, G. Melema)
 - Extraction of **cosmological parameters**
 - SDC3b launching Q1 2024

Science Data Challenge 4 – Magnetism

- Developed in collaboration with Magnetism SWG (Akahori, Vernstrom, Vacca, ...)
 - Scope still being refined, but full Stokes compact plus diffuse sky model with IGM, ISM, and ionosphere propagation
 - 10 square deg, 950 1760 MHz, 3 arcsec beam, source finding and characterisation
 - 100 square deg, 100 350 MHz, 350 1760 MHz, 10 arcsec beam, source finding and characterisation
 - Thermal noise equivalent few 1000 h
- Sky and Propagation Models nearing completion and looking good
- Telescope and Error Models
 - OSKAR for LOW has clear development path (building on SDC3a)
 - RASCIL for MID will be challenging (lack of effective starting point)

Propagated Stokes Q Sky Model at 950 MHz

Thank you for your time...

 \bullet

We recognise and acknowledge the Indigenous peoples and cultures that have traditionally lived on the lands on which our facilities are located.

• • <u>www.skao.int</u>

 \bullet

٠