Transmission spectroscopy of WASP-7 b with UVES

Detection of Na 1 D2 and tentative D1 line absorption

Hossein Rahmati

Hossein Rahmati^{1,2}, Stefan Czesla³, Sara Khalafinejad⁴, and Paul Mollière⁵

Abstract

- The hot Jupiter WASP-7b orbits an F-type star, HD 197286, with an orbital period of 4.954 days. The planet shows an obliquity of 86 ° \pm 6°, and has an equilibrium temperature of 1530 \pm 45 kelvin.
- The high-resolution transmission spectroscopy has allowed the individual Na I line to be resolved and provides the Na D lines a powerful probe to constrain the upper atmosphere. We used this technique to study the atmosphere of WASP-7 b via the Na D lines.

Data and methods

- We analyzed a spectral transit time series of 89 high-resolution spectra of the Ultraviolet and Visual Echelle Spectrograph (UVES).
- a. We used the telluric lines for an accurate alignment.
- b. We carried out a telluric correction with molecfit.
- c. Stellar magnetic activity investigated by the Ca II H and K, and H α lines.
- d. Center-to-limb variation (CLV) and Rossiter-McLaughlin (RM) effects modeled using synthetic spectra.
- e. Transmission light curves derived in 0.45 Å wide passbands.
- f. Transmission spectrum obtained by weighting average residual spectra.

Results

- The star shows no identifiable flares.
- The transmission spectra and light curves show signs of the CLV and the RM.
- Na I D_2 line: We detect a line contrast of $0.50 \pm 0.06\%$ (at $\sim 8.3\sigma$ level) and a FWHM of 0.13 ± 0.02 Å.
- Na I D_1 line: We derived a line contrast of $0.13 \pm 0.04\%$ (at ~3.2 σ level), which is considered a tentative detection.

Fig. 1. Transmission spectrum of Na I D_2 (*left column*) and Na I D_1 (*right column*) lines. Top panels: observed transmission spectrum (gray), with best-fit model representing the CLV and RM effects (solid red). Middle panels: observed transmission spectrum with the best-fit Gaussian absorption (red), and with the model shown in the upper panels subtracted (gray). The gray shades indicate 1σ uncertainty. Bottom panel: Residuals of the best-fit model. The black data points correspond to binning by a factor of 15.

Fig. 2. Transmission light curves of WASP-7 b around the Na I D_2 line. Top panel: Observation transmission light curves (gray) and modeled transmission light curves of the RM and the CLV (dotted blue line) for the 0.45 Å integration band centered on the Na I D_2 line. The dashed red line is the absorption component using a box model, and the gray shades denote its 1σ uncertainty. The solid black line is the best-fit combined model and the red points show binning by a factor of ten. Bottom panel: Residuals for binned and unbinned data. Green shades indicate out-of-transit time throughout.

Comparison to other Na 1 D₂ signal

Fig. 3. Comparison of excess absorption as measured by the EWs of Gaussian fits to the D_2 line with the fractional atmospheric coverage coverage ΔA .

Conclusion

Transmission spectroscopy is one of the prime techniques to study the atmospheric composision of exoplanets. We used this technique and studied the atmosphere of WASP-7 b via the Na D lines. The PLATO mission will launch soon and will discover small planets in the habitable zone of Sun-like stars. Therefore, follow-up observations of these planets are key to study their atmospheric composition and to search for a possible sign of life.

Acknowledgement

Hossein Rahmati acknowledges financial support from the ESA for attending the conference "ESP2024:PLATO Planetary Systems – formation to observed architectures" and acknowledges the SOC and LOC of the conference.

¹ Department of Physics and Astronomy, Heidelberg University, Germany

² Department of Physics, Bu-Ali Sina University, Hamedan 65178, Iran

³ Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany

⁴ Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany

⁵ Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany