Temperate giant planets:
golden targets for linking
detection and modeling
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Temperate Jupiters are a link between HIJs
and the Solar System giants

Hot Jupiters (HJs)

Highly irradiated and strong tidal interactions
Equilibrium temperature: 1000 - 3000 K
Orbital period <10 days

Overall low eccentricity distribution

Warm and temperate Jupiters

Less irradiated, atmospheres are usually not inflated
Equilibrium temperature: ~300 - 900 K

Orbital period: 10/20 - ~ 300 days

Wide range of eccentricity distribution

-
SN

Solar System giants

Equilibrium temperature 70 - 160K
Orbital period > 4000 days

Low eccentricities

Known to host moons and rings




Joining RV and transits to detect temperate Jupiters
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Joining RV and transits to detect temperate Jupiters
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\\ Characterize new temperate planets
A with photometry and spectroscopy
What are the orbital periods, masses,
4 \ and radii of these warm planets?

Measure the

interior Determine the atmospheric
composition of composition of gas giants.
temperate planets. What is their atmospheric
What is their fraction metallicities?

of heavy elements?

Study the dynamics of

eccentric temperate Jupiters.
Are they misaligned with
their host star?
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TESS observes a patch of the sky
for 27 days in a row

Planets with an orbital period
longer than this will appear as a
single transit
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Two years later, TESS
observes a second
transit of the same
planet

We now have a set of
possible period aliases
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Planning the follow-up of period aliases
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We have more than 20 possible periods.
We attribute a probability to each period
alias to prioritize the follow up.

We target the best period aliases with
CHEOPS.

MonoTools (Osborn+2022)



Recovering warm planets with CHEOPS

TESS 2018 TESS 2020 CHEOPS 2021
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We solved the period after only 5 observations
and detected a 48-day Neptune mass planet Ulmer-Moll+ (2023)



Recovering warm planets with CHEOPS
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MNEXT-GENERATION TRANSIT SURVEY
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Measuring masses

CORALIE program

@ Euler telescope

15 nights / year

to vet candidate and
characterize massive planets

HARPS warm giant program
to measure masses and
eccentricities of warm and
low-mass transiting planets.

4 successful proposals
30 nights: 2021-2023

New HARPS large
program: 2023 - 2025
Pl: Umer-Moll

of warm planets
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&/7.\“ Towards temperate Jupiters P >100 d

TOI1-2449 b:

0.64 Mj with an orbital period of 106 days
Equilibrium temperature of 400 K
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‘“/“]\“ Two long-period Jupiters in 2:1 resonance
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A Two long-period Jupiters In 2:1 resonhance
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Two long-period Jupiters in 2:1 resonance
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% Doubled the number of warm transisting planets

Highly

irradiated

planets
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Lessons learned

Identification of single transiting events
e Different pipelines usually find different transit events
(mostly due to detrending methods), except for obvious cases
e Centroid information is essential to rule out FP

Normalized Flux
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Lessons learned

Identification of single transiting events
e Different pipelines usually find different transit events
(mostly due to detrending methods), except for obvious cases
e Centroid information is essential to rule out FP

Prioritarisation for RV follow-up is not trivial
e Clearly good candidates
e Ranking needed : a lot of candidates have different pros &
cons (active star but clear transit event, crowded field)
e Observational contraints (observability ...)



Lessons learned

Identification of single transiting events
e Different pipelines usually find different transit events

(mostly due to detrending methods), except for obvious cases
e Centroid information is essential to rule out FP - . posteriorsamples —— Jupiter - Neptune

——— detection limit ---- Saturn
104 .

RV detection limit

Prioritarisation for RV follow-up is not trivial

e Clearly good candidates
e Ranking needed : a lot of candidates have different pros &

cons (active stars but clear transit event, crowded field)
e Observational contraints (observability ...)
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Not all cases will be solved with RVs
e Despite transit events vetted on target and RV follow-up,
some candidates are not ruled out as FP nor confirmed

e additional observations needed : AO imaging




Cooler planets are
their composition

We have precise mass and radius
measurements for these warm giant
planets.

They receive lower levels of stellar
irradiation than HJs and usually do
not have inflated atmospheres.

No degeneracy between radius
inflation mechanisms and
composition study.

ideal to explore
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How to estimate the planet's composition?

We combine observations and modeling
to measure the amount of heavy elements and metal enrichment.

Observables: planetary mass, radius, orbital period, and stellar age

We model the evolution 115 - 7=0.0 7—=0.12
of the planet with time 7=0.06 7—=0.18
1.10 'I|. 1 My planet evolution curve
Radius decreases with age |
and heavy element — 1.05 -'-'_
enrichment )
2 1.00 4\ Pure H/He
We can explore the impact ks
. aa 20 Mg
of varying the heavy 0.95
elements (Z) in the 40 Mg
0.90 -
envelope — 60Mg
0.85 =
| | | |
0 2 4 6 8

Time (years) x 10"



Warm Jupiters are metal-enriched

Planet metallicity is 20x

TOI-4862 b higher than the stellar one
1 Mjup @ 98 days

Teqg: 400K Planet contains of 85 Me
Age: 1.1 (+-0.4) Gyr : of heavy elements.
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Teq = 398.01*+5%4
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e |late-stage accretion of
planetesimals
(Mousis+2009,
Shibata+2020)
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e multiple mergers
during gas accretion
phase (Ginzburg &
Chiang 2020)

Rp = 0.93:48
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Caveats on the inferred metallicities

The inferred planetary metallicities have large uncertainties due to

e uncertainties on planetary mass, radius, and stellar age

e uncertainties on the model specifications

Radius evolution track for a 1.0 Mjup
planet at 0.1 au (~ 1500K)

New equation of state (CMS) for H and
He leads to overall smaller planets

(hydrogen is denser under certain
pressures and temperatures in CMS in
comparison to SCvH)

The inferred mass of heavy elements varies
by several earth masses

1.15

X

1 My planet evolution curve

- Pure H/He : - 60 Me
20 Me ——— Chabrier & Debras
- 40 Me SCVH
1 | |
0 2 4 6

Time (years)

x 109




Planet metal-enrichment correlates
with planetary mass

Q TESS planets
Period > 100 days
@ Period < 100 days
—~ 102 - ® e fit: a= 10.0, b=-0.39
N ] —— fit: a= 15.0, b=-0.81
N
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An inverse correlation is expected from g
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Updated from Dalba + 2022



In summary

Characterised 30 new transiting warm
and temperate planets around bright stars

These new warm Jupiters will be very
well characterized and allow to test
planet formation models.

PLATO will make a crucial contribution by
easily detecting these transiting giant
planets on long-period orbits, extending
beyond the habitable zone.
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