

Updates on Galapy

a fast API for modelling galaxy SEDs with Bayesian sampling

Tommaso Ronconi @Spoke3-WP1&2 monthly meeting

tronconi@sissa.it

Extract (astro-)Physical Info from the SED of galaxies

Key Performance Indicators

MS6 & MS7

GalaPy presentation paper in review

SUBMITTED! Soon public on <u>GitHub</u> and <u>PyPI</u>

New modelling

- Analytical solutions for Galaxy Evolution: realistic modelling of dust absorption/emission Gas, Stars, Metals and Dust (Lapi et al., 2018; 2020, Pantoni et al., 2019)
- 2-components dust model: as seen in GRASIL (<u>Silva et al., 1998</u>) but AGE DEPENDENT ENERGY BALANCE

(no radiative transfer + physical temperature)

Performance

- Hybrid C++/CPython implementation (performance + user friendly)
- First release: **shared memory parallelization** from Python

Bayesian framework

First release:

- Markov Chain Monte Carlo with emcee Foreman-Mackey et al., 2013
- Dynamic Nested Sampling with dynesty Speagle, 2019

Validation on 2x100 mock sources

$$egin{aligned} L_{ ext{CSP}}(\lambda_i, au_{ ext{GXY}}) &= \sum_{orall \, j \, > \, 0 \, | \, au_j \, \lesssim \, au_{ ext{GXY}}} rac{ au_j - au_{j-1}}{2} imes \ & imes \left\{ \psi(au_j) \; P_{L_{ ext{SSP}}}^{(1)} \left[\lambda_i, au_j, Z_\star(au_{ ext{GXY}} - au_j)
ight] + \ & + \psi(au_{j-1}) \; P_{L_{ ext{SSP}}}^{(1)} \left[\lambda_i, au_{j-1}, Z_\star(au_{ ext{GXY}} - au_{j-1})
ight]
ight\} \end{aligned}$$

KPI

2nd "Bottleneck" = scaling, but why?

\$ lscpu []				
Caches	(sum of all):			
Lld:	256 KiB (8 instances)	->	32	KiB
Lli:	256 KiB (8 instances)	->	32	KiB
L2:	2 MiB (8 instances)	->	256	KiB
L3:	16 MiB (1 instance)			
[]				

 It is still bugging me the way memory is dealt by the processes in particular, access to the SSP matrix

KPI

- my two cents: since the matrix cannot be loaded all in L1/L2 private caches, other processes trigger cache misses
- is it therefore a problem of **cache** invalidation?

Currently ~30%

(foreseen) KPIs for MS8

Paper 1 + Code public Parallelisation development

Foreseen KPIs for MS8

- 1 source: multiple positions in parameter space
- Multiple sources: multiple models sampled serially

Sampling devs KPI

(extends up to end of MS9)

... and this is my last slide, thanx!

SED fitting 101

Parallelisation scheme and why

Shared Memory parallel block

- User-oriented: I do want users to be able to tailor parallelization on their system easily, so this has to happen on the higher level interface
- Future devs in the sampling strategy: Especially considering a future development with hierarchical bayesian sampling I will need to parallelize sampling on multiple sources