
RAMSES 
GPU

Presented by:
Raffaele Pascale

Collaborators: 
Francesco Calura, Claudio Gheller, Emanuele De Rubeis, 

Donatella Romano, Valentina Cesare

WPs meeting - 20/12/23



GPU Optimization Strategy:
- An effective strategy involves porting and optimizing specific, time-consuming modules of 

N-body hydrodynamical codes onto GPU architecture. 
- This optimization aims to significantly reduce computational time and enhance the efficiency of 

simulations.

Context:
- In modern astrophysics, hydrodynamical N-body simulations play a pivotal role in testing theories

of galaxy formation and evolution.
- The need for a deep understanding of the involved physical processes drives the demand for 

simulations with higher spatial resolution.

Computational Challenges:
- As spatial resolution increases, computational demands escalate dramatically, posing a 

significant challenge.
- Addressing this challenge requires innovative solutions to optimize and accelerate 

computations.

Application to (MINI)RAMSES:
- Focusing on the (MINI)RAMSES code, known for its Eulerian nature and specialization in 

cosmological simulations.
- (MINI)RAMSES, written in Fortran90, uses Adaptive Mesh Refinement (AMR), dynamically 

increasing spatial resolution in regions meeting specific criteria (e.g., mass density).



Main goals:
Improving Performance and Reducing 
Computational Time.
Porting hydrodynamical and N-body modules 
to GPU architecture, yielding a ‘substantial’ 
speedup factor

how RAMSES works



Main goals:
Improving Performance and Reducing 
Computational Time.
Porting hydrodynamical and N-body modules 
to GPU architecture, yielding a ‘substantial’ 
speedup factor

Example of classical AMR working

RAMSES 

- Identification of cells suitable for 
refinement

- creation of grids with higher 
resolution

- Refined cells saved in 
non-contiguous memory

RAMSES exploits AMR (adaptive mesh 
refinement) to increase resolution on the 
mesh only where it is needed

Not suited for GPU porting



Main goals:
Improving Performance and Reducing 
Computational Time.
Porting hydrodynamical and N-body modules 
to GPU architecture, yielding a ‘substantial’ 
speedup factor

MINIRAMSES 

- Introduces the 
concept of 
super-oct in cell 
refinement.

- groups of adiaject 
ocs saved in 
contiguous 
memory locations 

- cells in super-oct 
saved in 
contiguous 
memory

RAMSES exploits AMR (adaptive mesh 
refinement) to increase resolution on the 
mesh only where it is needed

Moved to MINIRAMSES with a better 
optimization of AMR, designed for GPU 
parallelization



Main goals:
Improving Performance and Reducing 
Computational Time.
Porting hydrodynamical and N-body modules 
to GPU architecture, yielding a ‘substantial’ 
speedup factor

The porting strategy is based on:
- OpenACC directives to parallelize 

time-consuming loops and critical code 
regions;

- applying optimization techniques such as 
memory management, kernel 
optimization, and reduction of 
communication between CPU and GPU;

- profiling methods.

Identification of two main parts of the code 
suitable for GPU porting: 
N-body + Hydro 

MINIRAMSES 

- Introduces the 
concept of 
super-oct in cell 
refinement.

- groups of adiaject 
ocs saved in 
contiguous 
memory locations 

- cells in super-oct 
saved in 
contiguous 
memory



Timescale and milestones

Analysis and Preparation:
Investigation of MINIRAMSES to identify sections suitable for GPU parallelization 
- partially done (hydro and Nbody)

GPU porting and parallelization of hydrodynamical modules
Identification of suitable modules to port on GPU (partially done - Profiling)
Implementation and run of suitable tests (hydrodynamical sedevo3d test).
Evaluation of initial performance and identification of any issues or bugs
Optimization of the code on GPU to maximize performance 

Testing phase (Hydro)

GPU porting and parallelization of Nbody modules
Identification of suitable modules to port on GPU
Implementation and run of suitable tests (cosmological simulation)

Testing phase (Nbody)

Integration (Nbody and Hydro):
Integration in principal version of the code
Execution of tests to evaluate scalability



Accomplished work - KPIs 
(presentation during hackathon)
May 2023 - August 2023

- Identification of modules hydrodynamical 
modules to port on GPU.

- Partial GPU porting using openACC 
directives.

- Generation of profiling data to assess code 
performance before and after the porting.

- Analysis of code performance on the GPU, 
especially memory transfers.

Project started during June 2023, taking 
advantage of the hackathon event @ Cineca

Focus on MINIRAMSES, abridged version of 
RAMSES designed for GPU porting

Accomplished work

CPU implementation

GPU implementation



Ongoing work - KPIs
September 2023 - February 2024

Accepted

Submission of proposal for GPU hours @ 
Cineca (ISCRA C) - done and accepted



Ongoing work - KPIs
September 2023 - February 2024

Accepted

Submission of proposal for GPU hours @ 
Cineca (ISCRA C) - done and accepted

Get the code working on Leonardo

Attempt to replicate the same results: 
profiling data to assess code performance



Problems:
- unable to use nvidia compilers (now 

solved?)

- unable to make nvtx work

Ongoing work - KPIs
September 2023 - February 2024

Accepted

Submission of proposal for GPU hours @ 
Cineca (ISCRA C) - done and accepted

Get the code working on Leonardo

Attempt to replicate the same results: 
profiling data to assess code performance



The 
End


