

Conclusion

Using Deep Learning for spectral classification, redshift prediction and anomaly detection

Speaker: Fucheng Zhong

School of Physics and Astronomy, Sun Yat-Sen University School of Physics, Napoli Federico II University

7th July 2024

Conclusion

Contents

1 Introduction

- 2 GaSNet-II model and results
- 3 Generative model and results
- 4 Conclusion

Conclusion

Motivations

- Build an ML pipeline for next-generation sky survey (4MOST).
- Pure data drive results can be complementary to the classical pipeline.
- The statistical feature of ML is used for uncertainty estimation.
- Fast and efficient feature of ML to face challenges of the enormous data volume of next-generation sky surveys.
- The transient objects require a fast pipeline.

Introduction GaSNet-II model and results

Generative model and results

Conclusion

SDSS overview

sdss4.org

Conclusion

Training data

SDSS spectra, 13-subclass, 20k spectra used for each subclass.

7th July 2024

Intr	a	Intion
III I UI	ouu	JUUUI
_		

GaSNet-II model and results

Generative model and results

Conclusion

Pipeline

Architecture of pipeline.

- *P_i* gives probability.
- z̄ gives expectation.
- σ give error.

7th July 2024

Introd	luction
Intiou	luction
000	

Conclusion

SDSS confusion matrix

SDSS classification

- Most subclass accuracy > 90%.
- Average accuracy ≈ 92%.

GaSNet-II model and results

Generative model and results

Conclusion

SDSS redshift:

- $GF \approx 0.9$ for High SNR.
- $\Delta_z \sim O(10^{-3})$ for galaxy.
- $\Delta_z \sim O(10^{-2})$ for QSO.

GaSNet-II model and results ○○○● Generative model and results

Conclusion

SNR and uncertainty

Uncertainty is strong correlated with SNR when *SNR* < 1.

arxiv:2311.04146

Conclusion

Improvement

Ideas of improve the *z* accuracy:

More labeled data

 \rightarrow Each pixel points as labels to learned – reconstruction. ("Cheap" or free lunch)

- z-shift translation symmetry in logarithmic scale $\rightarrow ln(\lambda_o) - ln(\lambda_e) = ln(1 + z)$ (prior)
- Statistically, the spectra are rough similar.
 → z causes we observed the different rest frame wavelength
- Reconstruction/modeling help detect anomaly and obtain residual.
 - \rightarrow A more quantify and visualized result.

Conclusion

Model: reconstruction & contrasting

Reconstructing the spectrum and comparing the original and reconstructed.

Conclusion

Redshift accuracy

4MOST requirement > 99% for high SNR galaxy

Conclusion

Anomaly cases: degeneracy & large χ^2

Introduction

GaSNet-II model and results

Generative model and results

Conclusion

Pipeline

Scanning the whole redshift and class space with the pixel size interval, mapping the flux and error into a χ^2 curve. Classification and redshift estimate just finding the global minimum.

Conclusion

中山大學物理与天文学院

SNR, Degeneracy, GF and Completeness:

Generative model and results ○○○○○○● Conclusion

Visualization

Conclusion

Comparison and conclusion

Table 2. The con	parison of different methods
------------------	------------------------------

Method	MAD GALAXY	GF GALAXY	MAD QSO	GF QSO	Time sec/spec/core
QXP++	0.00037	0.980	1.15	0.055	0.4
Redmonster	0.000027	0.999	0.000452	0.977	<0.4
pPXF	0.07723	0.854	-	-	0.03
GaSNet-III	0.000040	0.993	0.000282	0.919	0.001

Table A1. The performance of different training data.

Train num	GF	Āz	MAD	MAE
5k QSO	91.65%	0.01438	$0.00026 \\ 3.75 \times 10^{-5}$	0.04117
5k GALAXY	96.79%	0.00216		0.00376
10k QSO	92.28%	0.01288	$\begin{array}{c} 0.00024 \\ 3.71 \times 10^{-5} \end{array}$	0.03480
10k GALAXY	97.50%	0.00148		0.00255
20k QSO	92.29%	0.01263	$\begin{array}{c} 0.00023 \\ 3.66 \times 10^{-5} \end{array}$	0.03481
20k GALAXY	97.93%	0.00123		0.00208

Table C1. The performance using different number of eigenspectra.

eigenspectra num	GF	Δz	MAD	MAE
3 QSO eigenspectra	91.51%	0.01517	0.00024	0.03952
3 GALAXY eigenspectra	98.06%	0.00145	3.66×10^{-5}	0.00217
5 QSO eigenspectra	90.97%	0.01309	0.00024	0.03496
5 GALAXY eigenspectra	97.79%	0.00187	3.70×10^{-5}	0.00291
10 QSO eigenspectra	92.29%	0.01263	0.00023	0.03481
10 GALAXY eigenspectra	97.93%	0.00123	3.66×10^{-5}	0.00208

Reaching the same accuracy as the classical method with faster speed, requiring a low training sample compared with former deep learning (GaSNet-II), using few learned eigenspectra to restore the spectra, it agrees with the conclusion before.

Thank you for your attention!