

11/07/2024

Catania, Italy

Morphology and spatial distribution of high-redshift galaxy gas and dust emission using source identification and deep learning

PhD Student IA / ICS -FORTH

Supervised by:

Dr. Jean-Luc Starck CEA Paris-Saclay / IA-FORTH

> Dr. Tanio Diaz-Santos IA - FORTH

Signal Processing Laboratory

Funded by the European Union

A disparity between ACDM predictions and observations:

Observations show that there is a lack of low mass and high mass galaxies with respect to number of DM halos

Disparity in the number of

observed low mass galaxies

In the **local universe**, these phenomena are understood

- For low mass galaxies: Baryonic processes can expel cold gas necessary for star formation, hence quenching them, leading to less observations.
- For high mass galaxies:

Funded by

the European Union

Energetic quasar feedback causes the quenching of star formation in galaxies, leading to the observed rarity of ultramassive galaxies

But what about for earlier epochs?

The mechanisms of quasar and SMBH accretion activities are still unclear at higher redshifts - as the gas and dust had much different physical conditions

2

Analysis of a high-redshift (z = 4.6) Hot DOG system

Image source: H. Farias, C. Nuñez, M. Solar, TensorFit a tool to analyse spectral cubes in a tensor mode

Starlet transform based source identification

cranstorm based source identification

Observations:

- In box #5, SCARLET has detected 3 peaks from the mean map of the cube, which may suggest the presence of multiple sources
- Upon slice-wise analysis of box #5, we observe that the the spatial positions of 'sources' change upon different frequency observations.
- This suggests that the point of interest may be a single source which is kinematically active, leading to different spatial locations at different frequencies.
- SCARLET-based detections were performed on each slice to better visualise the flux-density peaks

Ongoing work:

- Classifying whether detections with multiple peaks are a single or multiple sources quantifiably (constraints on the spatial movement per velocity, etc.)
- Implementing method on simulated spectral cubes (FIRE)
- Creating software to automate and make the process more efficient.

Summary (and thank you for listening :))

