

for Astrophysics

Predicting the Ages of Galaxies with an Artificial Neural Network

Laura. J. Hunt ^{1, 2}

Kevin. A. Pimbblet ^{1, 2} and David. M. Benoit ¹

¹ E.A. Milne Centre, University of Hull

² Centre of Excellence for Data Science, AI and Modelling (DAIM), University of Hull

Galaxy Spectra

Composite of their stars, gas and dust

Key components:

- The continuum
- Emission lines
- Absorption lines

Equivalent Widths (EWs)

- The strength of a spectral line
- EWs (Gordon et al. 2017) from Galaxy And Mass Assembly (GAMA) survey (Drive et al. 2009; Liske et al. 2015) DR3 (Baldry et al. 2018)

Spectral Lines - Equivalent Widths (EWs)

Spectral Line	Description	Spectral Line	Description
D4000*	Balmer break	MH	Mgb + MgH
Ηα	Hydrogen alpha	FC	Fel+Cal
Ηβ	Hydrogen beta	CNB	CN UV cyanogen band
ΗγΑ	Hydrogen gamma A	G	CH G band
[OIII] R	Doubly ionized oxygen R	MgG	Magnesium b triplet
[OIII] B	Doubly ionized oxygen B	NaD	Sodium D doublet
[SII] R	Singly ionized silicon R	EWs from GAMA survey DR3 (Gordon et al. 2017)	
[SII] B	Singly ionized silicon B		

*D4000 (Balmer break) is a ratio rather than a spectral line

GAMA Ages

- Median mass-weighted ages from DR3 (Baldry et al. 2018) of the Galaxy And Mass Assembly (GAMA) survey (Drive et al. 2009; Liske et al. 2015)
- Generated by the MAGPHYS SED fitting model (da Cunha, Charlot & Elbaz 2008) e.g.
 - 9.405 dex(yr) -> median 50th percentile
 - \pm 0.326 (1 σ) -> 16-84th percentile range
 - \pm 0.618 (2 σ) -> 2.5-97.5th percentile range

Artificial Neural Network (ANN)

- Supervised learning
 - Labelled training data -> ages
- 14 input features -> EWs
- 1 output feature -> age
 - Activation function (softsign)
 - Loss function (mean squared error)
 - Optimiser (Adam)

0

 $\overline{\mathbf{U}}$

- Number of hidden nodes (465)
- Number of layers = 6 (4 hidden)
- Test-train split (80-20)
- Batch size (32)
- Epochs (40)

Artificial Neural Network (ANN)

- Supervised learning
 - Labelled training data -> ages
- 14 input features -> EWs

1 output feature -> age **y** = $\frac{x}{1+|x|}$ **x x x 1** output feature -> age **y** = $\frac{x}{1+|x|}$ **x x**

	$p \ R$	ank s	Rank		
	0.7	56 ().755		
Μ	SE	MAE	R^2 Sco	ore	
0.0	020	0.108	0.530)	
$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y_i})^2$					
N	<i>IAE</i>	$=\frac{\sum_{i=1}^{n}}{\sum_{i=1}^{n}}$	$\frac{ y_i - \hat{y}_i }{n}$		
$R^2(y)$	y, ŷ) =	$= 1 - \frac{\sum_{i}'}{\sum_{i}}$	$\sum_{i=1}^{n} (y_i - y_i) = \frac{1}{n} (y_i - y_i)$	$\frac{(\hat{y}_i)^2}{(\bar{y}_i)^2}$	

Laura Hunt – I.hunt-2017@hull.ac.uk

MSE	Total In	In 16-84	In 2.5-97.5	Outside
Combined	96.7%	80.3%	16.4%	3.3%
Set 1	94.8%	78.2%	16.6%	5.2%
Set 2	98.6%	82.4%	16.2%	1.4%

- Set 1 < mean(IQR) < set 2
- 96.7% of galaxies are correctly predicted within the true age errors
- More mispredictions in set 1 but correct predictions are more accurate
- Ages tend to be underpredicted (more predictions on right)

MSE	Total In	In 16-84	In 2.5-97.5	Outside
Combined	96.7%	80.3%	16.4%	3.3%
Set 1	94.8%	78.2%	16.6%	5.2%
Set 2	98.6%	82.4%	16.2%	1.4%

- Set 1 < mean(IQR) < set 2
- 96.7% of galaxies are correctly predicted within the true age errors
- More mispredictions in set 1 but correct predictions are more accurate
- Ages tend to be underpredicted (more predictions on right)

MSE	Total In	In 16-84	In 2.5-97.5	Outside
Combined	96.7%	80.3%	16.4%	3.3%
Set 1	94.8%	78.2%	16.6%	5.2%
Set 2	98.6%	82.4%	16.2%	1.4%

 1σ

- Set 1 < mean(IQR) < set 2
- 96.7% of galaxies are correctly predicted within the true age errors
- More mispredictions in set 1 but correct predictions are more accurate
- Ages tend to be underpredicted (more predictions on right)

- Split 500 validation set by average property value
 - High set -> red
 - Blue set -> low

Specific star formation rate (sSFR)

- Measures star formation per unit mass
- We expect sSFR to decrease with mass
- Higher sSFR associated with younger galaxies

EWs: [SII] B, H α , [OIII] R, [SII] R, H β , [OIII] B + sSFR

- Split 500 validation set by average property value
 - High set -> red
 - Blue set -> low

• Left hand side:

- Younger galaxies = higher values
- Older galaxies = lower values

Stellar Mass

- Mass of the galaxy attributed to stars
- Higher mass associated with older galaxies

EWs: HλA, MH, FC, CNB, G, MgG, NaD + Stellar mass

- Split 500 validation set by average property value
 - High set -> red
 - Blue set -> low

• Left hand side:

- Younger galaxies = higher values
- Older galaxies = lower values
- Right hand side:
 - Younger galaxies = lower values
 - Old galaxies = high values

Summary

- 1. The ratios between different spectral lines can be used to infer the ages of galaxies
- 2. Our ANN is able to predict the ages of galaxies based on their EWs from their spectra
 - ~80% precision within ~1 σ
 - ~97% precision within ~2 σ
- 3. Predictions are more precise when true age is more precise

4. Predictions are physically motivated (e.g. sSFR, stellar mass and tracers for star formation)