Bayesian Imaging of the Spatio-Spectral X-ray Sky

M. Westerkamp, V. Eberle, M. Guardiani, P. Frank, T. Enßlin

ML4Astro 2024, Catania

- Non-trivial correlation structures
- Mixture of several components

- Non-trivial correlation structures
- Mixture of several components
- Response representation & application
- Non-Gaussian noise
- Several overlapping datasets

- Non-trivial correlation structures
- Mixture of several components
- Response representation & application
- Non-Gaussian noise
- Several overlapping datasets

Information Field Theory

$$P(s|d) = \frac{P(d|s)P(s)}{P(d)}$$

- Non-trivial correlation structures
- Mixture of several components
- Response representation & application
- Non-Gaussian noise
- Several overlapping datasets

Information Field Theory

$$P(s|d) = \frac{P(d|s)P(s)}{P(d)}$$

Variational inference: $min D_{KL}(Q(s|d)|P(s|d))$

- Non-trivial correlation structures
- Mixture of several components
- Response representation & application
- Non-Gaussian noise
- Several overlapping datasets

Information Field Theory

$$P(s|d) = \frac{P(d|s)P(s)}{P(d)}$$

Variational inference: $min D_{KL}(Q(s|d)|P(s|d))$

$$m = \langle s \rangle_{o}$$

$$\sigma^{2} = \langle (s - m)^{2} \rangle_{Q}$$

Chandra - SN1006

$$-\ln P(d_k|\lambda_k) = -\sum_{i=1}^{N} \left[\lambda_k^i - d_k^i \ln \lambda_k^i + \ln \left(d_k^i !\right)\right]$$

$$-\ln P(d_k | \lambda_k) = -\sum_{i=1}^{N} \left[\lambda_k^i - d_k^i \ln \lambda_k^i + \ln \left(d_k^i ! \right) \right]$$

count data d_k

Poissonian log-likelihood:

 $s=s(\xi), P(\xi)=N(\xi,1)$

 $s=s(\xi), P(\xi)=N(\xi,1)$

╉

diffuse emission

point sources

╋

background

+

background

(Winkler et al. 2014)

(Westerkamp et al. 2014) ¹³

(Winkler et al. 2014)

(Westerkamp et al. 2014) ¹⁴

Response application

(Winkler et al. 2014)

(Westerkamp et al. 2024) ¹⁵

Response application

(Winkler et al. 2014)

(Westerkamp et al. 2024)

16

Denoising

(Winkler et al. 2014)

(Westerkamp et al. 2024) ¹⁷

Denoising

(Winkler et al. 2014)

(Westerkamp et al. 2024) ¹⁸

Denoising

(Winkler et al. 2014)

(Westerkamp et al. 2024) ¹⁹

Denoising

(Winkler et al. 2014)

(Westerkamp et al. 2024) ²⁰

Denoising

(Winkler et al. 2014)

(Westerkamp et al. 2024) ²⁸

(Winkler et al. 2014)

(Westerkamp et al. 2024) ²¹

Reconstructed Point Sources

Decomposition

(Winkler et al. 2014)

(Westerkamp et al. 2024) ²²

Decomposition

(Winkler et al. 2014)

(Westerkamp et al. 2024) ²³

Reconstructed Diffuse Emission

Decomposition

(Winkler et al. 2014)

(Westerkamp et al. 2024) ²⁴

Relative Posterior Uncertainties

