Introducing LensCharm Charming Bayesian Generative Strong Lensing

Matteo Guardiani, Julian Rüstig, Jakob Roth, Philipp Frank, and Torsten Enßlin

MACHINE LEARNING FOR ASTROPHYSICS 2ND EDITION CATANIA, 8-12 JULY, 2024

The problem

The problem

galaxy cluster lensed galaxy images distorted light-rays Earth

Strong lensing with IFT

$P(s \mid d) =$

$P(s \mid d) = -$

P(s)

$P(s \mid d) = \frac{P(d \mid s) P(s)}{P(s)}$

$P(s \mid d) = \frac{P(d \mid s) P(s)}{P(d)}$

The prior

Source galaxy

Source galaxy

Source galaxy

DM halo mass p

 $\nabla \cdot \kappa = 2 \alpha$

C' 1				
		C :		
prome	IЕ		(\mathbf{O})	

 $y = x - \alpha(x)$

The Likelihood Instrument response

Lensed galaxy signal

Hubble Space Telescope

Credits @ Ruffnax (Crew of STS-125)

The Likelihood Instrument response

Lensed galaxy signal

Hubble Space Telescope

Credits @ Ruffnax (Crew of STS-125)

Data on Earth

The Likelihood Instrument response

Lensed galaxy signal

L(S)

Hubble Space Telescope

RL(S)

Credits @ Ruffnax (Crew of STS-125)

$P(d|s) = \mathscr{G}(RL(s) - d, \sigma_h)$

Data on Earth

Inference geometric Variational Inference

Credits @ Frank, P.; Leike, R.; Enßlin, T.A. Geometric Variational Inference. Entropy 2021, 23, 853.

The Data

Simulated HST data

The Reconstruction

Lensed source light

The Source

Ground truth

The Source

Posterior mean

The Convergence

Ground truth mass distribution

The Reconstruction

Reconstructed projected mass distribution

Flexible source brightness distribution models

- Flexible source brightness distribution models
- Flexible mass distribution models

- Flexible source brightness distribution models
- Flexible mass distribution models
- Instrumental effects

Lensed light noise-weighted residuals

- Flexible source brightness distribution models
- Flexible mass distribution models
- Instrumental effects
- Uncertainty estimates

Future Work

Future Work

- Improve mass models and substructure detection
- Incorporate multi-wavelength observations (radio -> X-ray)
- Enlarge charming models library :)
- And more...

SPT-0418 JWST data application

MACHINE LEARNING FOR ASTROPHYSICS CATANIA, 8-12 JULY, 2024

Thank your bound of the second second

Rüstig J., Guardiani M. et al., Introducing LensCharm A charming Bayesian strong lensing reconstruction framework https://doi.org/10.1051/0004-6361/202348256

GitLab https://gitlab.mpcdf.mpg.de/ift/lenscharm

matteani@mpa-garching.mpg.de

Backup

Multi-frequency SPT0418-47 (preliminary)

Guardiani M., Rüstig J. et al., in prep.

Backup More uncertainties

Source galaxy relative uncertainty (std/mean)

- 3.5 - 3.0 - 2.5 - 2.0 - 1.5 - 1.0 - 0.5

Backup

Multi-frequency SPT0418-47 (preliminary)

Guardiani M., Rüstig J. et al., in prep.

Backup Single-frequency SPT0418-47

Rüstig J., Guardiani M., et al., A&A 2024

Backup SPT0418-47

4.5 kpc

Cathey et al., arXiv:2307.10115

