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Deep learning for 
scientific data 
compression
Tomáš Brzobohatý, Petr Strakoš, Lubomír Říha
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HPC resources evolution
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Volume Rendering of scalar variable with output image metrics

Gas Burner
MSE – Mean Square Error
SSIM – Structure Similarity Index (0 – 1), 1 is optimal
PSNR – Peak Signal-to-Noise ratio [dB]

Structural similarity index (SSIM) is a method for predicting 
the perceived quality of digital television and cinematic 
pictures, as well as other kinds of digital images and video.
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Fourier Features mapping to learn high-frequency functions in 
low-dimensional problem domains. 

Source:  M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoorthi, J. T. Barron, R. Ng,. 
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. arXiv:2006.10739, (2020)

• simple, fully connected neural network
• Input: coordinates (pixels of the image)
• Output: R,G,B channels of a given image
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Fourier Features mapping to learn high-frequency functions in 
low-dimensional problem domains. 

Source:  M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoorthi, J. T. Barron, R. Ng,. 
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. arXiv:2006.10739, (2020)

Tancik et. al.: 
• Introduced the Fourier Features mapping to learn high-frequency 

functions in low-dimensional problem domains
• mapping is a transformation of coordinates by a simple 

multiplication with a matrix with a random distribution 
• If the matrix is unitary – the mapping is disabled – the neural 

network is not capable of capturing high frequencies 
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Fourier Features mapping to learn high-frequency functions in 
low-dimensional problem domains. 

Source:  M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoorthi, J. T. Barron, R. Ng,. 
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. arXiv:2006.10739, (2020)

• If the matrix is random and it is multiplied with sin and cos functions 
the neural network captures also high frequencies 

• the size of the matrix affects the number of Fourier Features (FF)
• it is a parameter that can defined by the user  

We have extended this 2D image-focused approach to scientific datasets
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Fourier Features mapping to learn high-frequency functions in 
low-dimensional problem domains. 

Source:  M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoorthi, J. T. Barron, R. Ng,. 
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. arXiv:2006.10739, (2020)
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Fourier Features mapping to learn high-frequency functions in 
low-dimensional problem domains. 

We present a modified version of Fourier mapping functions for learning the mapping from 2D or 3D coordinates space to an output 
space containing simulation variables. We use dynamic Fourier features mapping to:

• decrease the input size in the learning process

• enable dynamic learning of the optimal distribution of features mapping.
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Radeon Instinct MI250X GPUs Nvidia A100 GPUs on SXM4
KAROLINA-GPULUMI-G

Due to the input size, a distributed data-parallel approach for training on multiple GPU accelerators 
was used. We tested the distributed data-parallel approach up to 256 GPUs on LUMI and up to 32 
GPUs on KAROLINA clusters. 
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Resistive Relativistic 
Magnetohydrodynamics 
Simulation by PLUTO code
PLUTO is a freely-distributed software for the numerical solution of mixed 
hyperbolic/parabolic systems of partial differential equations (conservation laws) 
targeting high Mach number flows in astrophysical fluid dynamics. The code is 
designed with a modular and flexible structure whereby different numerical 
algorithms can be separately combined to solve systems of conservation laws using 
the finite volume or finite difference approach based on Godunov-type schemes.

https://plutocode.ph.unito.it
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PLUTO code - 3D dataset, One time step - 12 scalar variables 27.6 million cells



ML4ASTRO 2024 12

PLUTO code - 3D dataset, One time step - 12 scalar variables 27.6 million cells

Compression
1.25GB to 20.09MB
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PLUTO code - 3D dataset, One time step - 12 scalar variables 27.6 million cells
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PLUTO code - 3D dataset, One time step - 12 scalar variables 85.7 million cells
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PLUTO code - 3D dataset, One time step - 12 scalar variables 85.7 million cells

Compression
3.86GB to 54MB
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PLUTO code - 3D dataset, One time step - 12 scalar variables 85.7 million cells
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PLUTO code - 3D dataset, One time step - 12 scalar variables 27.6 million cells

3.86 GB 54.14 MB
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PLUTO code - 3D dataset, 5 time steps - 12 scalar variables 27.6 million cells
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PLUTO code - 3D dataset, 5 time steps - 12 scalar variables 27.6 million cells

Compression
6.24GB to 54MB
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For structured datasets, several methodologies of the training process can be selected. Fictitious decomposition 
of structured data can significantly reduce computational resources and training time but affect result quality.
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Application potential:

• Storing a larger number of time steps

• Long-term data storage

• Intermediate checkpoints of large-scale simulations for new runs, 
reducing the runtime overhead of restarted simulations

• Less memory consumption for GPU rendering

• Neural net interpolates results to different scale

• Do all post-processing during the simulation
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Interactive data visualization
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3D Gaussian splatting for real-time visualization
3DGS in a glance

• Based on Neural Radiance Fields methods, which 
provide a novel-view synthesis of scenes captured 
with multiple images. 

• 3DGS maintains competitive training times and 
allows real-time novel-view synthesis at high visual 
quality.

• Commodity HW (PC with a single GPU) can be used 
for rendering above 30fps at 1080p resolution.

Source: Convex Variational Methods for Single-
View and Space-Time Multi-View 

Reconstruction

Source: Kerbl, Bernhard, et al. "3D Gaussian Splatting for Real-Time Radiance Field Rendering." ACM 
Trans. Graph. 42.4 (2023): 139-1.
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Application on astrophysical data
• PLUTO dataset

• The original dataset converted into 
a sparse regular volumetric grid 
(OpenVDB), 350x700x350 voxels

• The compressed representation of 
the original dataset converted into 
a sparse regular volumetric grid 
(OpenVDB), 350x700x350 voxels 

• Pre-rendered by Cycles 
renderer (Blender)

• Datasets decoded into 3DGS
• Original and Compressed 

datasets visualised 
simultaneously using a single 
GPU

• Remote display of the results
• Rendering on the visualization 

server (1 GPU)

• Display and interaction on the 
client’s computer over Ethernet

Original dataset Compressed dataset

3D Gaussian splatting for real-time visualization
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Thank you

Tomáš Brzobohatý tomas.brzobohaty@vsb.cz
Petr Strakoš petr.strakos@vsb.cz
Lubomír Říha  lubomir.riha@vsb.cz 


