Target Selection for a redshift limited survey with Machine Learning

Gursharanjit Kaur

- Maciej Bilicki and WAVES photo-z group
- Center for Theoretical Physics, PAN, Warsaw

July 10, 2024

4MOST (4 meter Multi Object Spectroscopic Telescope) Spectrograph to be hosted at VISTA telescope

Driver et al, 2019

WAVES: Galaxy Evolution Survey with 4MOST spectrograph In two sub-surveys WIDE

0.9 million galaxies Z band (central wavelength 0.88 μ m) magnitude , ZMag \leq 21.1, redshift z \leq 0.2

Probing significantly lower galaxy and halo masses in the low-redshift than before e.g GAMA Survey Success Criteria: **Completeness of 0.95** WIDE has complete overlap with KiDS (Imaging survey) Input Photometry is from KiDS+VIKING

Challenge:

Selecting the targets for spectroscopic redshift estimation without prior idea of redshift!

General Solution:

Photometric redshift estimation using the color and magnitude measurements

Photometric redshift estimation

Credits: Ben Hoyle Talk, Munich, 2018 SDSS filters

For the target selection for 4MOST WAVES-WIDE,

- Instead of redshift estimation, we need galaxies to be within a redshift and a magnitude limit
- A classification problem instead of a regression problem: either redshift ≤ 0.2 or redshift > 0.2
- Using ML Classification (XGBoost), we get a probability of z < z_lim

Basic: Identify the strong continuum features (Balmer, Lyman break) in spectra and multiband data

\star Template fitting approach

- Synthetic photometry templates based on complex galaxy evolution models
- Real data compared to synthetic photometry
- Large range of template spectra and redshift
- \circ Some Codes: TopZ, LEPHARE, HYPERZ

★ Non-parametric/ Machine Learning

- Data with photometry and spectroscopic redshift as training set
- Minimize the difference between spec_z and ML_z
- Using Neural Networks, Self Organizing Maps(SOM)

Target selection catalog

- Imaging from VIKING (Z-band selection) and KiDS (for photo-zs): ugriZYJHK (0.3 μm to 2.2 μm)
- PROFOUND photometry (total galaxy flux) (Robotham et al. 2018)
- with corresponding spectroscopic redshift from cross matching surveys (GAMA, COSMOS, DESI, ...)
- Incompleteness at fainter end is due to bias of spectroscopic survey towards Luminous Red Galaxies (LRGs), ELGs

Target selection catalog

Spectroscopic sample from redshift from cross matching surveys (SDSS, GAMA, COSMOS, DESI, ...)

Redshift distribution from SHARK mocks

Redshift distribution from Selection catalog

Results

Using Magnitudes, Colors as features

- ★ A photometry based redshift classification pipeline
 ★ Can provide the probability of the target lying within survey target limit
- ★ Based on the survey preferences, the probability threshold can be varied to achieve either higher purity or completeness