Target Selection for a redshift limited survey with Machine
Learning

dxdx
.. thedndx NARODOWE
Gursharanijit Kaur dxdxpandx Nc ENTRUM
dxg;dx‘ ANNAUKI
o ‘s . dx
Maciej Bilicki and WAVES photo-z group axcft

Center for Theoretical Physics, PAN, Warsaw

July 10, 2024

.s/. MACHINE LEARNING
"/~ FOR ASTROPHYSICS

2" EDITION CATANIA, 8-12 JULY, 2024




4MOST (4 meter Multi Object Spectroscopic Telescope)
Spectrograph to be hosted at VISTA telescope

A WAVES

Wide Area Vista Extragalactic Survey

Driver et al, 2019

WAVES: Galaxy Evolution Survey with 4MOST spectrograph
In two sub-surveys

WIDE

0.9 million galaxies

Z band (central wavelength 0.88 pum)

magnitude , ZMag S 21.1, redshiftz< 0.2

Probing significantly lower galaxy and halo masses in the
low-redshift than before e.g GAMA

Survey Success Criteria: Completeness of 0.95

WIDE has complete overlap with KiDS (Imaging survey)
Input Photometry is from KiDS+VIKING
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Challenge:

Selecting the targets for spectroscopic redshift estimation without prior idea of

redshift!

General Solution:

Photometric redshift estimation using the color and magnitude measurements
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Photometric redshift estimation
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Credits: Ben Hoyle Talk, Munich, 2018 SOSS filters

Basic: Identify the strong continuum features (Balmer, Lyman
break) in spectra and multiband data
% Template fitting approach
o Synthetic photometry templates based on complex
galaxy evolution models
o Real data compared to synthetic photometry
o Large range of template spectra and redshift
o Some Codes: TopZ, LEPHARE, HYPERZ
% Non-parametric/ Machine Learning
o Data with photometry and spectroscopic redshift as
training set
o Minimize the difference between spec_z and ML_z
o Using Neural Networks, Self Organizing Maps(SOM)

For the target selection for 4AMOST WAVES-WIDE,
e Instead of redshift estimation, we need galaxies to be within a redshift and a magnitude limit
e A classification problem instead of a regression problem: either redshift < (0.2 or redshift > (.2
e Using ML Classification (XGBoost), we get a probability of z < z_lim




Target selection catalog

e Imaging from VIKING (Z-band selection) and KiDS (for photo-zs): ugriZYJHK (0.3 pm to 2.2 ym)
e PROFOUND photometry (total galaxy flux) (Robotham et al. 2018)
e with corresponding spectroscopic redshift from cross matching surveys (GAMA, COSMOS, DESI, ...)
e Incompleteness at fainter end is due to bias of spectroscopic survey towards Luminous Red Galaxies
(LRGs), ELGs
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Target selection catalog

Spectroscopic sample from redshift from cross matching surveys (SDSS, GAMA, COSMOS, DESI, ...)
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Results

Using Magnitudes,Colors as features

Feature Importances (Greater than 0.0005)

Purity:

91.58%
Completeness:
91.72%

Features
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A photometry based redshift classification pipeline
Can provide the probability of the target lying within
survey target limit

% Based on the survey preferences, the probability
threshold can be varied to achieve either higher
purity or completeness
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