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The Problem
● Simulations present a very different data challenge compared to 

observations
● Simulations are complex and data-rich: 

– e.g. a universe in a box with ~106 galaxies that live in 
20+dimensional feature space !1 PB of data (see Figs. 1 and 2)

● Data from today’s largest projects (e.g. EAGLE, TNG, MassiveBlack, 
MilleniumTNG, FLAMINGO) are already difficult to explore and 
analyze, and this will be a huge challenge for next-generation 
exascale simulations  

● Need to exploit unsupervised machine learning methods to extract 
information efficiently and generate new knowledge from these 
large datasets

Machine Learning for Simulations?
Simulations are the best approximation to experimental laboratories in astrophysics and cosmology. However, the 
complexity and richness of their outputs severely limits the interpretability of their predictions. We describe a new 
approach to obtaining useful scientific insights agnostically from a broad range of simulations. The method can be used on 
today’s largest simulations and will be essential to solve the extreme data exploration and analysis challenges posed by 
the exascale era. Our concept is based on applying nonlinear dimensionality reduction to learn compact representations of 
the simulation in its intrinsic low-dimensional space. The simulation data is seamlessly projected onto this space for 
interactive inspection, visual interpretation, and quantitative analysis. We present a prototype using a Convolutional 
Autoencoder trained on simulated galaxies from IllustrisTNG to obtain a natural “Hubble tuning fork” similarity space that 
can be visualized interactively.

Our Solution
● We have developed a tool that agnostically, automatically, and efficiently learns the underlying structures in the 

simulation at various scales and using different fields, and then reduces the dimensionality of the data by projecting it 
onto a spherical surface for easy interactive inspection, sample selection, and downstream quantitative analysis

● The tool provides an intuitive interpretation of the intrinsic low-dimensional space by projecting both the data and the 
learned representation onto the spherical surface, and allowing interactive visualization of both

Implementation
● We use a Convolutional Autoencoder to learn a compact 2D representation of the simulated objects on a spherical surface 

based on a choice of metric distance that quantifies the similarity of their structures. The learned representation 
includes invariances in the data (e.g. rotational and translational)

● A high reconstruction accuracy ensures that the data’s underlying structure is captured by the compact representation
● The data and the model latent space are both mapped onto a 3D interactive visualization of the sphere using hierarchical 

HiPS1 tilings in the open source tool AladinLite2 
● The projection can be interactively visualized to examine the data (e.g. images) at each level of the hierarchy, and to 

select samples of objects that are output directly to TopCat3 tables for local analysis

1http://aladin.cds.unistra.fr/hips/#doc
2https://aladin.cds.unistra.fr/AladinLite/
3https://www.star.bris.ac.uk/ mbt/topcat/~

What can I use it for?
● Correlations and causal relationships between many different properties of the structures (e.g. galaxies, large-scale 

environment) can be easily explored by projecting additional features onto the latent space
● Observational data can be compared directly to mock data in the latent space to obtain a complete picture of the key 

similarities and differences between the simulations and observations to aid in model selection 
● Do you have simulations with large and high-dimensional data outputs? Come talk to us!

Actual research use cases
1) Our tool can be used to learn and visualize the intrinsic space where galaxies in cosmological simulations are located 

according to the similarity of their structure in an arbitrary number of physical (or phase space) dimensions and for 
each matter component (including stars, gas and dark matter)  

2) Simulated galaxies can be compared directly to data from the largest upcoming surveys (e.g. Euclid, SKA, LSST, etc.) in 
the same intrinsic space to compare their full distributions in detail for model selection

First prototype results
● We tested the prototype by training on 

1) 51,000 mock multiband galaxy images from the Illustris+IllustrisTNG simulations (Nelson et al. 2019; Rodriguez-~

Gomez et al. 2019), and 
2) 150,000 real ~ galaxy images from the Kaggle GalaxyZoo SDSS dataset (AstroDave et al. 2013, York et al. 2000)

● The model effectively learned the overall coarse characteristics of the galaxy images (color, size, morphology, 
inclination, and interactions) with an RMS error of 2.2% (after 1,000 epochs of training on four NVIDIA A40 GPUs)

● We are constantly adding functionality and plan to release of working prototype next year
● Your feedback is important!
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Scan me to explore the intrinsic spherical 
projection of IllustrisTNG simulated 

galaxies interactively in your browser!
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Figure 2: Example of the richness of information contained in today’s large cosmological simulations. The structures of interest inhabit a high-dimensional 
space that is difficult to explore, visualize, and analyze. The panels show the hierarchy of views of a single simulation, from the global view of the full box at 
the top, to slices through 12 dimensions corresponding to physical variables, to 2D gas and stellar projections of a small subsample of simulated galaxies, to 
the detailed structures of single objects at the bottom (images courtesy of the TNG Collaboration).
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Figure 3. Prototype workflow. Images (e.g. galaxies) or higher-dimensional structures (e.g. 6D phase space point clouds) extracted from the simulation are 
used to train the Convolutional Autoencoder to obtain a compact representation of the intrinsic low-dimensional space of the objects that can be visualized 
and explored interactively on the surface of a sphere, and then used to select samples and output the original data and its intrinsic representation for 
analysis by the user on their local machine.
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Engel et al. (2011)

Figure 1: Comparison of modern hydrodynamical cosmological 
simulations in terms of size and resolution (from Nelson et. 
al 2019). The largest contain >106 objects and >1011 resolution 
elements.
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cosmological simulations

“What I cannot create,  
I do not understand” 

Richard Feynman

What are cosmological simulations?

cosmological simulations attempt to build 
a Universe in a computer using the known 

laws of physics
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“… a disheartening number of ingredients must be assembled to produce a plausibly complete recipe for galaxy formation” 

White & Frenk (1991)



… after running for 2 years on a supercomputer (~100M CPU-hours)



A multi-scale challenge
The TNG Collaboration



What does the data 
look like?

~10 billion resolution elements
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2D maps of 
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If all the information is there, why are these simulations so difficult to interpret? 

… let’s focus on a single object

The TNG Collaboration



The data volume and complexity problem

Today’s largest projects evolve a universe in a box:  

• ~100 billion resolution elements 

• in a >100-dimensional feature space 

• in millions objects (galaxies)  

• ~1 petabyte of data (petascale) 

Shaye et al. (2023)

The largest cosmological simulations

Exascale Era

>100x more 

data

Exascale simulations: >100 times larger datasets -> ML essential

a feature space with  
 dimensions> 1012}

Hard-working students at a scientific sweatshop as 
imagined by DALL-E

LUMI, Europe’s largest supercomputer



How can we approach this challenge?

The ideal tool should 

1. learn a simple representation of all structures in the simulation without labels 

3. enable exploration and interpretation using interactive visualization for arbitrarily 
large datasets 

4. be code-agnostic (can be used on any simulation without expertise)

HAL9000 from 

2001: A Space Odyssey



The power of Generative Deep Learning

• Learns underlying distribution of dataset from samples 
without labels 

• Projects data onto low-dimensional space, providing a 
powerful way to explore and interpret it galaxy structure 

data in physical space data in intrinsic 

low-dimensional space



compression of structure 

into few numbers 

⃗z = (z1, z2, z3)

“What I cannot create, I do not understand” 

Richard Feynman

reconstruction

bottleneck
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First results

• Trained prototype on  

• ~51,000 synthetic galaxy images from the IllustrisTNG simulations (Nelson et al. 2019; Rodriguez-Gomez et al. 2019), and  

• ~150,000 real galaxy images from the GalaxyZoo (Lintott et al. 2008) 

• Learned the high-level galaxy features (i.e. color, size, morphology, inclination, and interactions) 

Rule #3:  
Interpret and visualize models

Rule #4:  
Explore limits and scope of models





Scientific discovery with

• Astronomers describe galaxies using single numbers based on intuition 
(e.g. luminosity, size, shape, etc.) 

• But galaxies ARE NOT points!  

• they are complex objects emerging from many physical processes

   +

How we have described galaxies for the last 100 years

Real galaxies as seen by HST …
… and JWST

Rule #1:  
Compare to domain reference and 

broader context



Scientific discovery with    +

• Astronomers describe galaxies using single numbers based on their intuition 
(e.g. luminosity, size, shape, etc.) 

• But galaxies ARE NOT points!  

• they are complex objects emerging from many physical processes 

• Ask the machine: how many numbers are needed to describe a galaxy?

32 dimensions are enough to capture galaxy structure (at ~2% level) 

original images

reconstructions

> 10,000-dimensional pixel space 32-dimensional manifold

Rule #5:  
Share and discuss lessons learned



Scientific discovery with    +

simulation 
or 

real?

1. Exploration 

• Correlations between all physical properties of 
structures 

• Interpret using known labels (e.g. galaxy morphology 
or environment) 

2. Simulation Based Inference + Model selection  

• Galaxies are chaotic: cannot compare objects directly! 

• Instead compare structural distributions non-
parametrically 

• Likelihood without need for summary statistics 

More applications… 



Scientific discovery with    +

} }
reduce to summary statistics: 


luminosity, mass, color, metallicity, etc.

compare 1-D distributions 
assuming no uncertainty in model

forward model

simulation

observation

learn low-dimensional 
representations from samples


(preserving information)

galaxy formation and 
cosmological physics

approximate amortized 
likelihood for inference

robust statistical 
comparison of PDFs for 

model selection



Try it!
Play with a demo!

• arXiv:2406.03810 (Polsterer, Doser, Fehlner & Trujillo-Gomez 2023, in press) 

• github.com/HITS-AIN/Spherinator 

Can we help you explore and interpret your simulations and/or data?  

sebastian.trujillogomez@h-its.org
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Rule #6:  
Publish software and data

Rule #2:  
Adopt best practices from ML 

community

https://arxiv.org/abs/2406.03810v1
https://github.com/HITS-AIN/Spherinator
mailto:sebastian.trujillogomez@h-its.org
http://space.h-its.org


1. Physical symmetries: rotational equivariance 

2. Beyond images to full 3D structures: 

• described using Geometric Deep Learning 

• explore 3D structures interactively 

What’s next? original galaxy image

Chazotte et al. (in prep)

equivariant representation using Zernike polynomials



Scientific discovery with

Shape of the galaxy halo predicts stellar mass                                     
(Packer, Villar, Hogg, STG in prep.)

   +

how different are these 3D 
objects?

The dark halos of two simulated galaxies

• Astronomers describe galaxies using single numbers based on their intuition 
(e.g. luminosity, size, shape, etc.) 

• But galaxies ARE NOT points!  

• they are complex objects emerging from many physical processes 

• Ask the machine: how many numbers are needed to describe a galaxy?


