Automatic Modelling and Object Identification in Radio Astronomy

Richard Fuchs, Jakob Knollmüller, Lukas Heinrich, Torsten Enßlin

International Conference on Machine Learning for Astrophysics 2nd Ed. - ML4ASTRO2

Catania, Italy, 8-12 July 2024

richard.fuchs@tum.de

Automatic Modelling and Object Identification in Radio Astronomy

Richard Fuchs, Jakob Knollmüller, Lukas Heinrich, Torsten Enßlin

International Conference on Machine Learning for Astrophysics 2nd Ed. - ML4ASTRO2

Catania, Italy, 8-12 July 2024

richard.fuchs@tum.de

I. Heywood u. a. "The 1.28 GHz MeerKAT Galactic Center Mosaic". In: The Astrophysical Jour nal 925.2 (2022), S. 165.

Bayesian Imaging

$$d = R s + n$$

Synthetic image data

- noisy 2D images -
- unit response -

R = 1

Bayesian Imaging

$$d = R s + n$$

Synthetic image data

- noisy 2D images -
- unit response -

R = 1

Bayes' theorem

$$P(s \mid d) = \frac{P(d \mid s) P(s)}{P(d)}$$

Bayesian Imaging

$$d = R s + n$$

Synthetic image data

- noisy 2D images •
- unit response -

R = 1

Bayes' theorem

$$P(s \mid d) = \frac{P(d \mid s) P(s)}{P(d)}$$

Bayesian Imaging

Generative models

$$d = R s + n$$

Synthetic image data

- noisy 2D images -
- unit response -

R = 1

Bayes' theorem

$$P(s \mid d) = \frac{P(d \mid s) P(s)}{P(d)}$$

Bayesian Imaging

Generative models

Diffuse emission

- positive, correlated & flexible

$$d = R s + n$$

Synthetic image data

- noisy 2D images -
- unit response -

R = 1

Bayes' theorem

$$P(s \mid d) = \frac{P(d \mid s) P(s)}{P(d)}$$

Bayesian Imaging

Generative models

Diffuse emission

- positive, correlated & flexible

Point sources

- positive & independent

$$d = R s + n$$

Synthetic image data

- noisy 2D images -
- unit response -

R = 1

Bayes' theorem

$$P(s \mid d) = \frac{P(d \mid s) P(s)}{P(d)}$$

Bayesian Imaging

Generative models

Diffuse emission

- positive, correlated & flexible

Point sources

- positive & independent

Approximate the posterior

$$d = R s + n$$

Synthetic image data

- noisy 2D images -
- unit response -

R = 1

Bayes' theorem

$$P(s \mid d) = \frac{P(d \mid s) P(s)}{P(d)}$$

Bayesian Imaging

Generative models

Diffuse emission

- positive, correlated & flexible

Point sources

positive & independent -

Approximate the posterior

ξ

S

Rs

d

Sky description

Model & Optimization

Sky description

Synthetic image data

Sky description

Reconstructed components

Model & Optimization

Sky description

Reconstructed components

Model & Optimization

Sky description

Reconstructed components

St2 - reconstructed mean 10 -6 -

, 10⁶

105

E 10⁴

10³

F 10⁶

105

E 10⁴

10²

4 -

Challenges

- precise localization
- unknown number of objects

Challenges

- precise localization
- unknown number of objects

U-Net architecture

2842

https://arxiv.org/abs/1505.04597

Challenges

- precise localization
- unknown number of objects

U-Net architecture

Training data

- RadioGalaxyDataset *

https://arxiv.org/abs/1505.04597

Challenges

- precise localization
- unknown number of objects

U-Net architecture

Training data

- RadioGalaxyDataset *

DBSCAN

* https://zenodo.org/records/7692494

https://arxiv.org/abs/1505.04597

- (a) identification
- (b) modeling
- (c) optimization

- (a) identification
- (b) modeling
- (c) optimization

- (a) identification
- (b) modeling
- (c) optimization

ξ_b S⊳ ♦ Rs n V K d

- (a) identification
- (b) modeling
- (c) optimization

- (a) identification
- (b) modeling
- (c) optimization

- (a) identification
- (b) modeling
- (c) optimization

- (a) identification
- (b) modeling
- (c) optimization

- (a) identification
- (b) modeling
- (c) optimization

Steps

- identification (a)
- modeling (b)
- optimization (C)

. . .

Steps

- (a) identification
- (b) modeling
- (c) optimization

(data)

Richard Fuchs

richard.fuchs@tum.de

more talks on NIFTy, here at ML4ASTRO

