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Introduction

As missions collect data, simulations are needed to
compare theory to prediction

Use simulations to test parameters
Cosmology combined with astrophysics

Accurate simulations can be incredibly expensive
Cheap simulations + machine learning = success
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Objective

Goal: Use NNs to map from DM to Galaxy distributions
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Methods - Data

CAMELS simulations
N-Body and Hydrodynamic Simulations

COLA (COmoving Lagrangian Acceleration)

CAMELS

Fast approximations to N-Body simulations
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Methods - Data

Input: DM density fields from N-Body simulations
Target: Galaxy fields from hydrodynamic simulations

Our data is heavily imbalanced - about 17 million
particles in the input, about 18000 in the target
Using 2563 voxels

>99% accuracy possible by predicting O galaxies!
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Methods — Network Architecture

Use a two-phase architecture -
binary classification followed by

regression

Use classifier to determine if each voxel
is likely to contain a galaxy or not

Regression on voxels likely to contain
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Results — Classification

Want to select model with highest recall with high accuracy
High recall is important to avoid false negatives

Model Accuracy Recall Precision Training Time (RTX A6000)
Inception 97.34 95.38 3.537 6 minutes
R2U-Net 98.24 94.16 5.196 12 minutes
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Methods - HOD

Need benchmark model to compare our model to
HOD (Halo Occupation Distribution)

Can range in complexity

We use a model with 3 free parameters

Minin, M4, @
Place galaxies in halos with mass > M,,,;,, with a Poisson

a
distribution with mean (Mﬂ)
1
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Results — Regression
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Results — Regression, Power spectra
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Variational Diffusion Model (VDM)

Goal: Predict conditional probability distributions of galaxies given DM

Forward Diffusion Process:
Noise is progressively added to the galaxy field
During training, U-Net learns noise added: (Noisy image, DM, 1)

Denoising Process: Reverse process, generate samples

Loss: VLB of pg(xgai, Xpu)

Our model works on 2D data, but can be configured for 3D
Very easy to add parameter conditioning

Kingma, D. et al., arXiv:2107.00630

Michigan Technological University ML4ASTRO?2 7/11/24



Results — Classification

Input Dark Matter Map True Galaxy Map True Galaxy Map (Binary) Predicted Galaxy Map
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Accuracy: 0.9907
Precision: 0.8370
Recall: 1.0000
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Results — Regression
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Results — Regression
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Results — Galaxy ower spectra

Average 2D Power Spectrum Comparison
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Conclusions

Model is able to Eredict locations of galaxies
down to reasonably small scales

After training, little computational cost is needed
Setup is generic and many networks can be used
Further work is needed to reach smaller scales

Parameter conditioning is needed to be useful
across parameter space
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Future Work

To improve the results and utility of our
model, we have a few changes we plan
on implementing:

Use LH data to make more robust
Expand using other hydro models

Replace N-Body simulations in all
models with CCKLA/NECOLA

Train using velocities
Focus training on halos

Kaushal et al. arXiv:2111.02441
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Methods — Network models

1X1 Conv. Net 3 X 3 Conv. Net 5 X 5 Conv. Net

Inception model

CNN with multiple kernel sizes to capture info at select
scales

CNN that effectively captures spatial relations and s Fph
context at multiple scales B e e

R2U-Net
Residual Recurrent U-Net L
Adds residual blocks to “deepen” network -
Recurrent nets “remember” earlier states
Learns special dependencies better

Zhang et al.
arXiv:1902.05965
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Data

We make use of two types of simulations from the CAMELS project:

27 DM-only N-Body simulations
27 hydrodynamic simulations, with DM, gas particles, stars, black
holes, etc.
Each simulation evolves 2563 DM particles, plus 2563 gas particles
(hydrodynamic only) in a box size of (25 h™Mpc)? from z = 127 to
z=0.
For the N-Body sims, we create a 3D field of the counts of particles
within each of 2563 voxels
For the hydrodynamic sims, we create a similar field, but instead
with counts of galaxies
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