Toward a deep learning approach for fast galaxy generation

Tanner Sether PhD Student Advisor: Elena Giusarma Michigan Technological University tmsether@mtu.edu

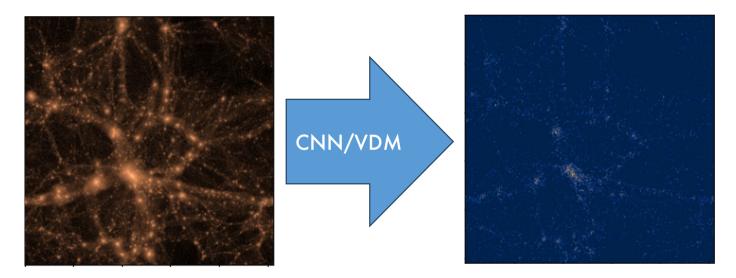
ML4ASTRO2

Introduction

- As missions collect data, simulations are needed to compare theory to prediction
- Use simulations to test parameters
 - Cosmology combined with astrophysics
- Accurate simulations can be incredibly expensive
- Cheap simulations + machine learning = success

Objective

Goal: Use NNs to map from DM to Galaxy distributions

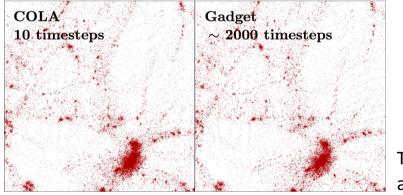


Michigan Technological University

7/11/24

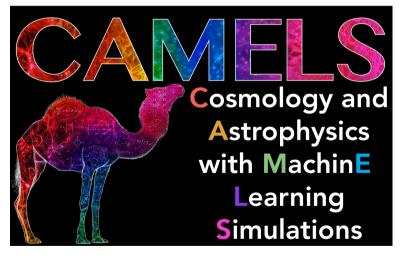
Methods – Data

- CAMELS simulations
 - N-Body and Hydrodynamic Simulations
- COLA (COmoving Lagrangian Acceleration)
 - Fast approximations to N-Body simulations
 - More computationally accessible



Tassev, S. et al. arXiv:1301.0322

https://www.camel-simulations.org/

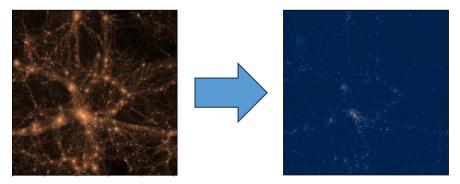


Michigan Technological University

ML4ASTRO2

Methods – Data

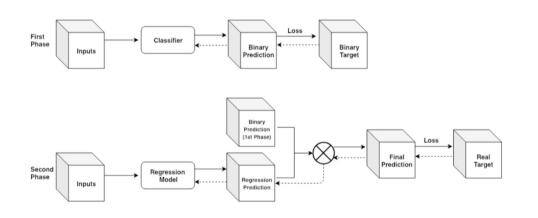
- Input: DM density fields from N-Body simulations
- Target: Galaxy fields from hydrodynamic simulations
- Our data is heavily imbalanced about 17 million particles in the input, about 18000 in the target
 - Using 256³ voxels
- >99% accuracy possible by predicting 0 galaxies!



Michigan Technological University

Methods – Network Architecture

- Use a <u>two-phase architecture</u> binary classification followed by regression
 - Use classifier to determine if each voxel is likely to contain a galaxy or not
 - Regression on voxels likely to contain galaxies
- Weighted cross-entropy loss, to minimize false negatives
- Classifier: <u>Inception</u> or <u>R2U-Net</u>
- Regressor: <u>R2U-Net</u>



Zhang et al. https://doi.org/10.48550/arXiv.1902.05965

7/11/24

Results – Classification

- Want to select model with highest recall with high accuracy
 - High recall is important to avoid false negatives

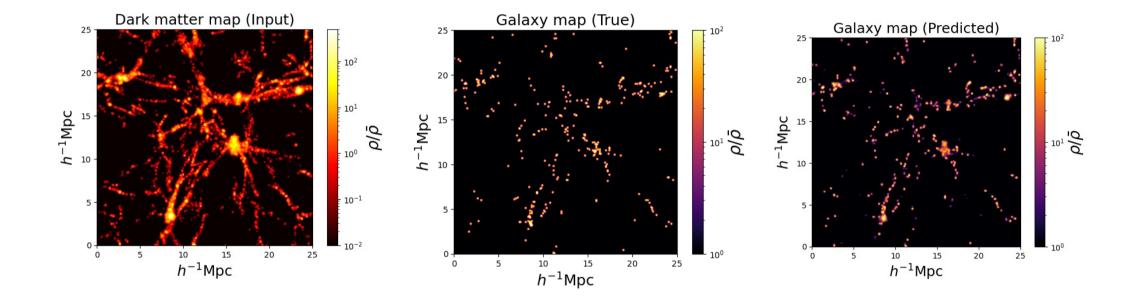
<u>Model</u>	Accuracy	Recall	Precision	Training Time (RTX A6000)
Inception	97.34	95.38	3.537	6 minutes
R2U-Net	98.24	94.16	5.196	12 minutes

Michigan Technological University

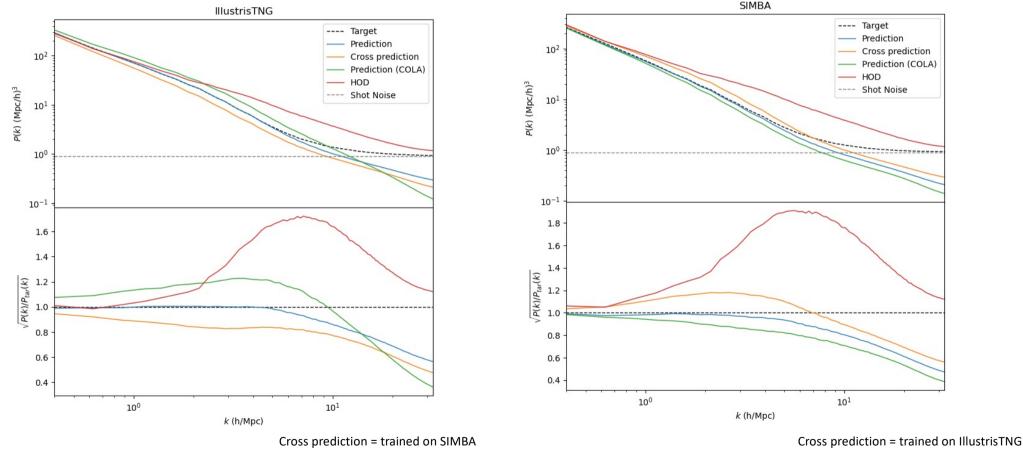
Methods – HOD

- Need benchmark model to compare our model to
- HOD (Halo Occupation Distribution)
- Can range in complexity
- We use a model with 3 free parameters
 - M_{min}, M_1, α
 - Place galaxies in halos with mass > M_{min} with a Poisson distribution with mean $\left(\frac{M}{M_1}\right)^{\alpha}$

Results – Regression



Michigan Technological University



Michigan Technological University

ML4ASTRO2

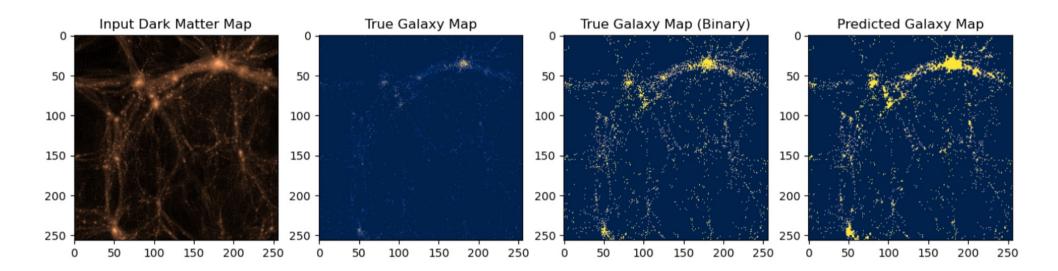
Variational Diffusion Model (VDM)

- Goal: Predict conditional probability distributions of galaxies given DM
- Forward Diffusion Process:
 - Noise is progressively added to the galaxy field
 - During training, U-Net learns noise added: (Noisy image, DM, t)
- **Denoising Process:** Reverse process, generate samples
- Loss: VLB of $p_{\theta}(x_{gal}, x_{DM})$
- Our model works on 2D data, but can be configured for 3D
- Very easy to add parameter conditioning

Kingma, D. et al., arXiv:2107.00630

Michigan Technological University

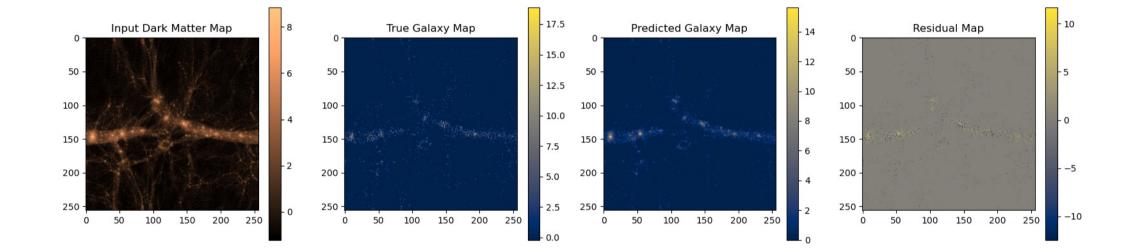
Results – Classification



Accuracy: 0.9907 Precision: 0.8370 Recall: 1.0000

Michigan Technological University

Results – Regression

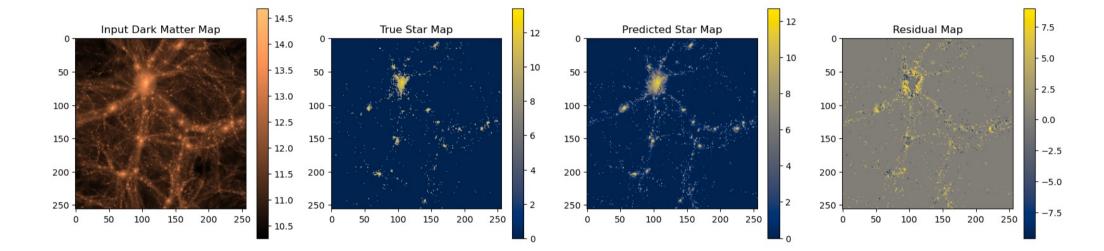


*preliminary results

Michigan Technological University

7/11/24

Results – Regression

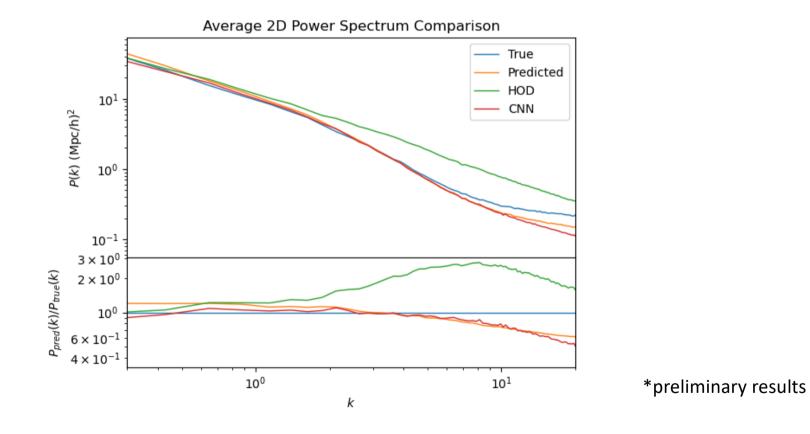


**pre-preliminary results

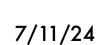
Michigan Technological University

7/11/24

Results – Galaxy ower spectra



Michigan Technological University

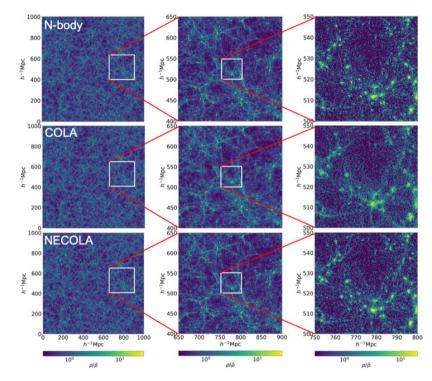


Conclusions

- Model is able to predict locations of galaxies down to reasonably small scales
 - After training, little computational cost is needed
- Setup is generic and many networks can be used
- Further work is needed to reach smaller scales
- Parameter conditioning is needed to be useful across parameter space

Future Work

- To improve the results and utility of our model, we have a few changes we plan on implementing:
- Use LH data to make more robust
- Expand using other hydro models
- Replace N-Body simulations in all models with COLA/NECOLA
- Train using velocities
- Focus training on halos

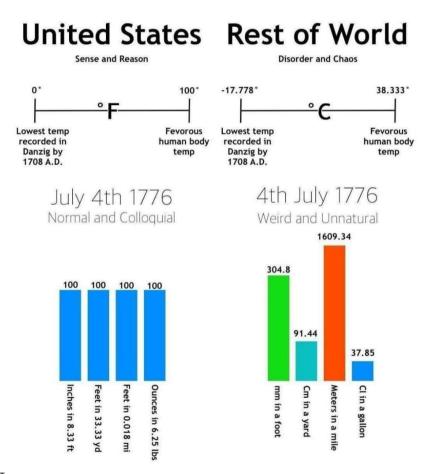


Kaushal et al. arXiv:2111.02441

Acknowledgements

- Elena Giusarma
- Mauricio Reyes Hurtado
- Francisco Villaescusa-Navarro and CAMELS
- Neerav Kaushal
- Michigan Tech Physics Department
- Michigan Tech Graduate Student Government
- Research reported in this publication was supported in part by funding provided by the National Aeronautics and Space Administration (NASA), under award number 80NSSC20M0124, Michigan Space Grant Consortium (MSGC).

Thank you!



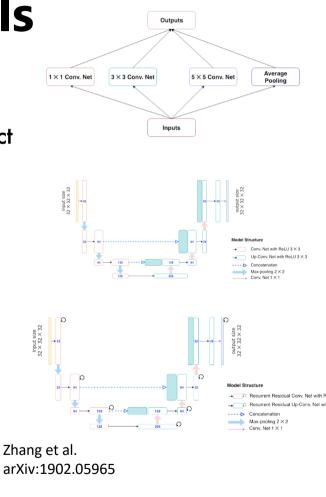
Michigan Technological University

References

- Alom, Md. et al, "Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation", arXiv:1802:06955 (2018).
- 2. Kingma, D. et al, "Variational Diffusion Models", arXiv:2107.00630 (2021)
- 3. Ono, V. et al, "Debiasing with Diffusion: Probabilistic reconstruction of Dark Matter fields from galaxies with CAMELS", arXiv:2403.10648
- 4. Tassev, S. et al, "Solving Large Scale Structure in Ten Easy Steps with COLA," Journal of Cosmology and Astroparticle Physics, vol. 2013, no. 06, p. 036 (2013).
- Villaescusa-Navarro F. et al, "The CAMELS project: Cosmology and Astrophysics with MachinE Learning Simulations," arXiv:2010.00619 (2021).
- 6. Zhang, X. et al, "From Dark Matter to Galaxies with Convolutional Networks," arXiv:1902.05965 (2019).

Methods – Network models

- Inception model
 - CNN with multiple kernel sizes to capture info at select scales
- U-Net
 - CNN that effectively captures spatial relations and context at multiple scales
- R2U-Net
 - Residual Recurrent U-Net
 - Adds residual blocks to "deepen" network
 - Recurrent nets "remember" earlier states
 - Learns special dependencies better



Michigan Technological University

ML4ASTRO2

Data

- We make use of two types of simulations from the CAMELS project:
 - 27 DM-only N-Body simulations
 - 27 hydrodynamic simulations, with DM, gas particles, stars, black holes, etc.
- Each simulation evolves 256³ DM particles, plus 256³ gas particles (hydrodynamic only) in a box size of $(25 h^{-1} \text{Mpc})^3$ from z = 127 to z = 0.
 - For the N-Body sims, we create a 3D field of the counts of particles within each of 256³ voxels
 - For the hydrodynamic sims, we create a similar field, but instead with counts of galaxies