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Introduction
• As missions collect data, simulations are needed to 

compare theory to prediction
• Use simulations to test parameters

• Cosmology combined with astrophysics
• Accurate simulations can be incredibly expensive
• Cheap simulations + machine learning = success
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Objective
• Goal: Use NNs to map from DM to Galaxy distributions

CNN/VDM
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Methods – Data

• CAMELS simulations
• N-Body and Hydrodynamic Simulations

• COLA (COmoving Lagrangian Acceleration)
• Fast approximations to N-Body simulations
• More computationally accessible

https://www.camel-simulations.org/

Tassev, S. et al.
arXiv:1301.0322
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Methods – Data
• Input: DM density fields from N-Body simulations
• Target: Galaxy fields from hydrodynamic simulations
• Our data is heavily imbalanced – about 17 million 

particles in the input, about 18000 in the target
• Using 2563 voxels

• >99% accuracy possible by predicting 0 galaxies!
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Methods – Network Architecture
• Use a two-phase architecture – 

binary classification followed by 
regression
• Use classifier to determine if each voxel 

is likely to contain a galaxy or not
• Regression on voxels likely to contain 

galaxies
• Weighted cross-entropy loss, to 

minimize false negatives
• Classifier: Inception or R2U-Net
• Regressor: R2U-Net

Zhang et al.
https://doi.org/10.48550/arXiv.1902.05965



ML4ASTRO2 7/11/24

Results – Classification
• Want to select model with highest recall with high accuracy

• High recall is important to avoid false negatives

Model Accuracy Recall Precision Training Time (RTX A6000)

Inception 97.34 95.38 3.537 6 minutes

R2U-Net 98.24 94.16 5.196 12 minutes
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Methods – HOD
• Need benchmark model to compare our model to
• HOD (Halo Occupation Distribution)
• Can range in complexity
• We use a model with 3 free parameters

• 𝑀!"#, 𝑀$, 𝛼
• Place galaxies in halos with mass > 𝑀!"# with a Poisson 

distribution with mean %
%!

&
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Results – Regression
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Results – Regression, Power spectra

Cross prediction = trained on SIMBA Cross prediction = trained on IllustrisTNG
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• Goal: Predict conditional probability distributions of galaxies given DM
• Forward Diffusion Process: 

• Noise is progressively added to the galaxy field
• During training, U-Net learns noise added: (Noisy image, DM, t)

• Denoising Process: Reverse process, generate samples

• Loss: VLB of 𝑝'(𝑥()*, 𝑥+%)
• Our model works on 2D data, but can be configured for 3D
• Very easy to add parameter conditioning 

Variational Diffusion Model (VDM)

Kingma, D. et al., arXiv:2107.00630
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Results – Classification

Accuracy: 0.9907
Precision: 0.8370
Recall: 1.0000
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*preliminary results

Results – Regression
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Results – Regression

**pre-preliminary results
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Results – Galaxy ower spectra

*preliminary results
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Conclusions
• Model is able to predict locations of galaxies 

down to reasonably small scales
• After training, little computational cost is needed

• Setup is generic and many networks can be used
• Further work is needed to reach smaller scales
• Parameter conditioning is needed to be useful 

across parameter space
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Future Work
• To improve the results and utility of our 

model, we have a few changes we plan 
on implementing:

• Use LH data to make more robust
• Expand using other hydro models
• Replace N-Body simulations in all 

models with COLA/NECOLA
• Train using velocities
• Focus training on halos

Kaushal et al. arXiv:2111.02441 



ML4ASTRO2 7/11/24

Acknowledgements
• Elena Giusarma
• Mauricio Reyes Hurtado
• Francisco Villaescusa-Navarro and CAMELS
• Neerav Kaushal
• Michigan Tech Physics Department
• Michigan Tech Graduate Student Government
• Research reported in this publication was supported 

in part by funding provided by the National 
Aeronautics and Space Administration (NASA), under 
award number 80NSSC20M0124, Michigan Space 
Grant Consortium (MSGC).



ML4ASTRO2 7/11/24

Thank you!
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Methods – Network models
• Inception model

• CNN with multiple kernel sizes to capture info at select 
scales  

• U-Net
• CNN that effectively captures spatial relations and 

context at multiple scales

• R2U-Net
• Residual Recurrent U-Net
• Adds residual blocks to “deepen” network
• Recurrent nets “remember” earlier states
• Learns special dependencies better

Zhang et al.
arXiv:1902.05965
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Data
• We make use of two types of simulations from the CAMELS project:

• 27 DM-only N-Body simulations
• 27 hydrodynamic simulations, with DM, gas particles, stars, black 

holes, etc. 
• Each simulation evolves 2563 DM particles, plus 2563 gas particles 

(hydrodynamic only) in a box size of 25	ℎ"#Mpc $ from 𝑧 = 127 to 
𝑧 = 0.
• For the N-Body sims, we create a 3D field of the counts of particles 

within each of 2563 voxels
• For the hydrodynamic sims, we create a similar field, but instead 

with counts of galaxies


