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WHAT DRIVES STAR FORMATION?
TOP-DOWN MODELS
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WHAT DRIVES STAR FORMATION?
TOP-DOWN MODELS
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WHAT DRIVES STAR FORMATION?
BOTTOM-UP MODELS
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WHAT DRIVES STAR FORMATION?
BOTTOM-UP MODELS

scrit
→ gravity 
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CAN MACHINE LEARNING HELP?
REGRESSION MODEL: 

XGBoost
INPUT: pixel-scale 
properties
eg. Σgas, σgas, Ωdyn OUTPUT:

pixel-scale 
values for ΣSFR
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CAN MACHINE LEARNING HELP?
REGRESSION MODEL: 

XGBoost
INPUT: pixel-scale 
properties
eg. Σgas, σgas, Ωdyn OUTPUT:

pixel-scale 
values for ΣSFR

•Highly optimised to 
be accurate on a 
point-by-point basis

PROS CONS
•Not easily 
interpretable

•Not physically 
meaningful•Places limits on how 

good any equation-
based model can be TH
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STUDY GOAL: INTERPRETABLE ML



SYMBOLIC REGRESSION (PySR)

MOVIE CREDIT: MILES CRANMER 2023



TOY DEMO: “SYNTHETIC FG13 DATASET”

SFR FG13:
FG13 model functional form found! 

logΣSFR = logσgas, z  + logΩdyn + logΣgas + C



TWO TIMESCALES, TWO EXPERIMENTS

10 MYR AVG SFR 100 MYR AVG SFR

UV, SED 
fitting

←

Hα→



LTOT = LMSE + LQ

MACHINE LEARNING TRAINING
10 MYR AVG SFR 100 MYR AVG SFR

LQ = Quantile Loss
Q = [0.1, 0.25, 0.5, 0.75, 0.9]

CHOOSING TOP EQUATIONS

LPYSR     <   LBEST
MODEL              ANALYTIC

MODEL  
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FIRE-2 FOUND EQUATION EXAMPLES

100 MYR AVG SFR

Model R2 = 0.556
XGBoost R2 = 0.641

10 MYR AVG SFR

Model R2 = 0.413
XGBoost R2 = 0.424



100 MYR AVG SFR10 MYR AVG SFR

ALL FOUND EQUATIONS AT FIDUCIAL VALUES



SUMMARY & POTENTIAL FUTURE ENDEAVOURS

FUTURE WORKS
• Apply to observational data  

eg. PHANGS
→ consideration of errors 

during training

• Input into SAMs
• Architectural features to recover 

dispersion in feature space

STUDY ACHIEVEMENTS
• SR to understand 

observational & empirical 
SF scaling relations

• Applied to cosmological 
zoom-in simulations (FIRE-2)

• Found equations!

10 MYR AVG SFR 100 MYR AVG SFR



TWO TIMESCALES, TWO EXPERIMENTS: SHAP

10 MYR AVG SFR 100 MYR AVG SFR
1
2
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