

DIANE MALINDA SALIM

NASA FINESST & Quad Fellow at Rutgers University

Blakesley Burkhart (Rutgers University & Flatiron Institute CCA) Matthew E. Orr (Rutgers University & Flatiron Institute CCA)

in : linkedin.com/in/dmsalim/

a data-driven approach for star formation parameterisation

Machine Learning for Astrophysics, 2nd Edition **Thursday, 9th July 2024**

KENNICUTT 1998

logΣ_{gas} [M⊙pc⁻²] *

-⁻²Myr⁻¹]

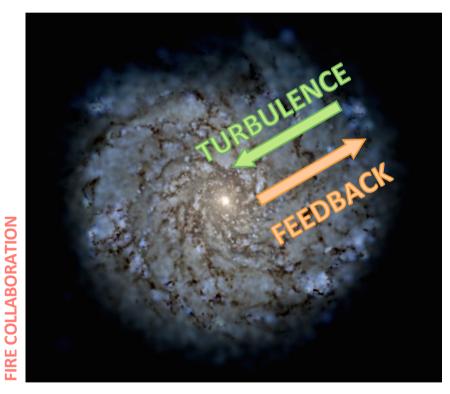
logΣsrr [M₀pc

STARS
 FORM
 FROM GAS

 $\Sigma_{SFR} \propto \Sigma_{gas}^{1.4}$

IMAGE: JWST COLLABORATION

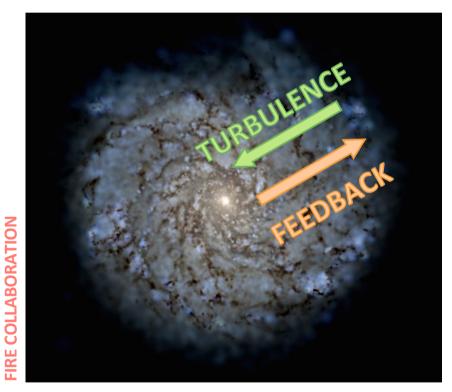
TOP-DOWN MODELS



TURBULENCE MOMENTUM DECAY

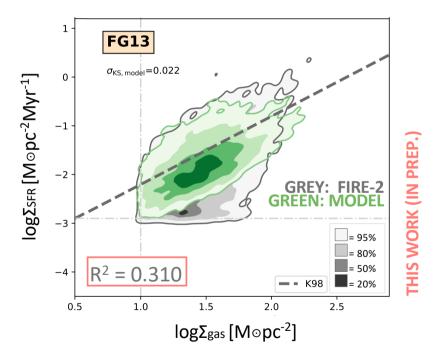
FEEDBACK INJECTION RATE $\frac{dP_{\rm turb}}{dt} = -\frac{\Omega_{\rm dyn}}{2}P_{\rm turb} = -\frac{\Sigma_{\rm gas}\sigma_{\rm gas}\Omega_{\rm dyn}}{2} \qquad \qquad \frac{dP_{\rm inj}}{dt} = \left(\frac{P_*}{m_*}\right)\frac{d\Sigma_*}{dt} = \left(\frac{P_*}{m_*}\right)\Sigma_{\rm SFR}$

TOP-DOWN MODELS

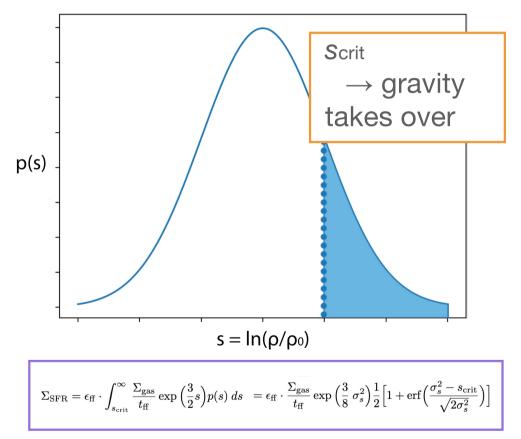


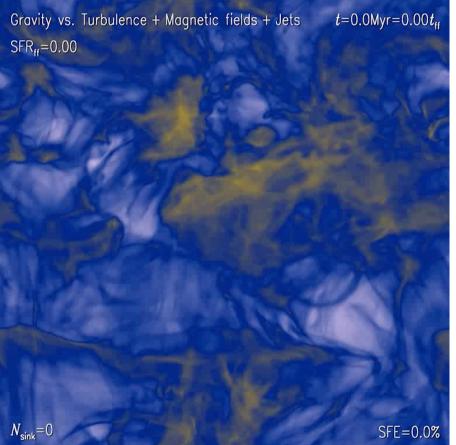
$$\Sigma_{
m SFR} = rac{\sqrt{3}}{2} rac{\Sigma_{
m gas} \Omega_{
m dyn} \sigma_{
m gas,z}}{(P_*/m_*)}$$

FAUCHE-GIUGÉRE (2013) (FG13)

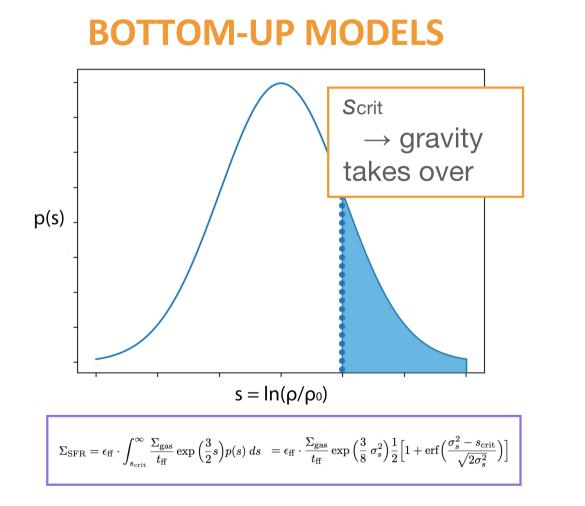


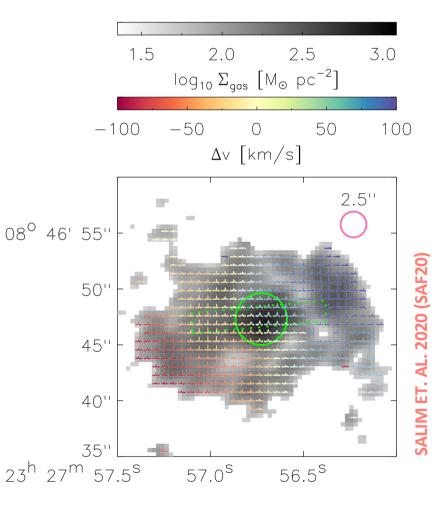
BOTTOM-UP MODELS



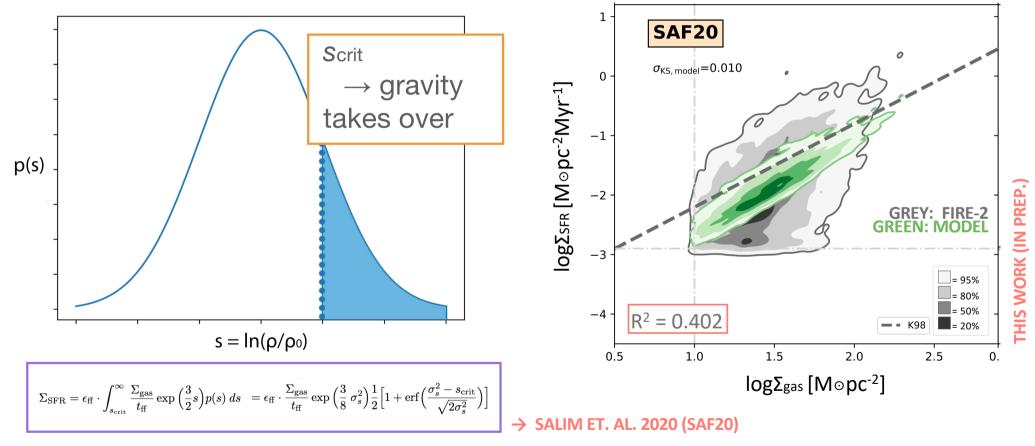


FEDERRATH 2015

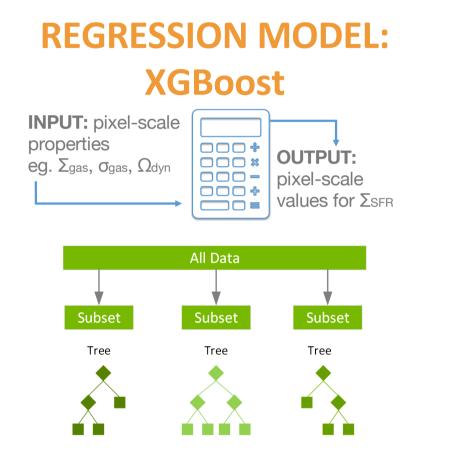


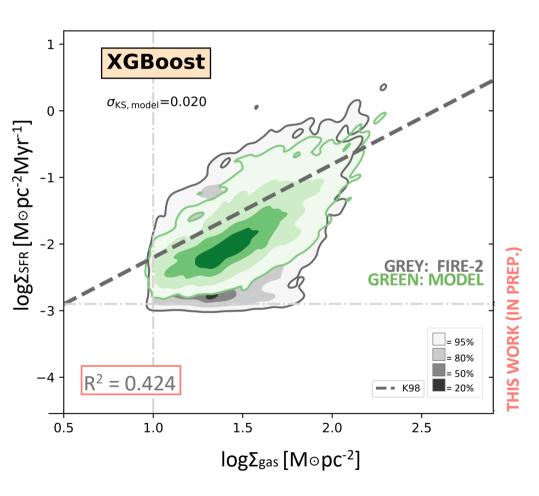


BOTTOM-UP MODELS

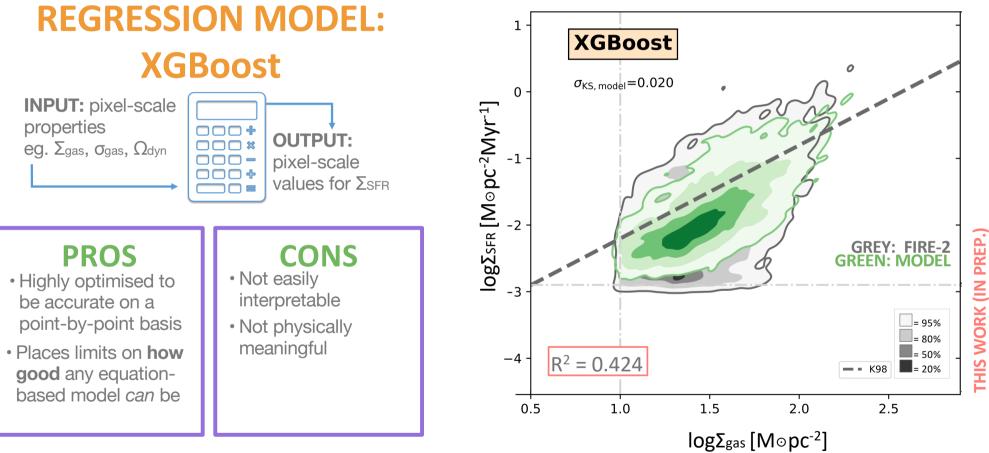


CAN MACHINE LEARNING HELP?

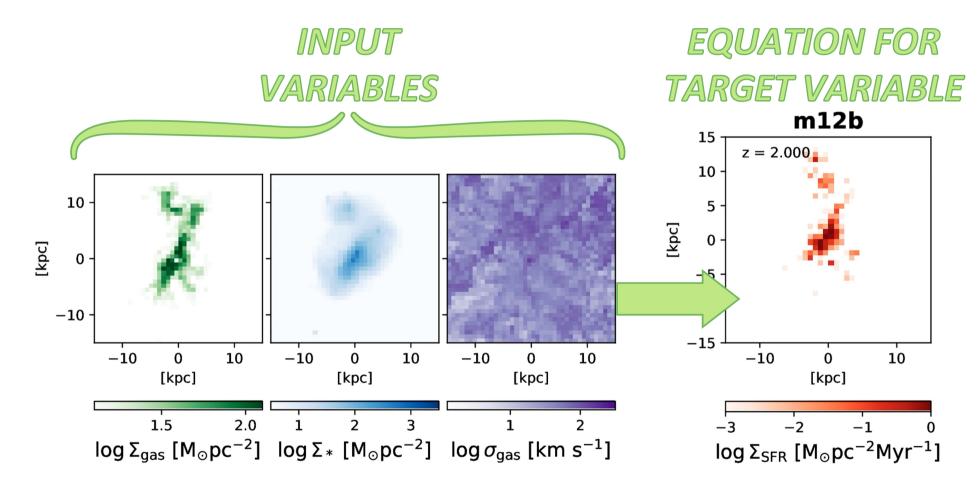




CAN MACHINE LEARNING HELP?



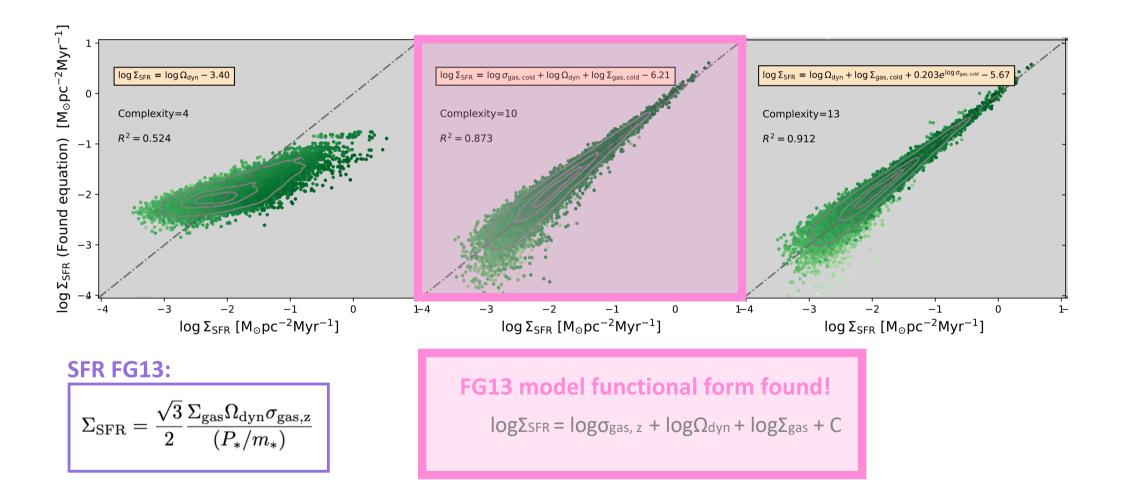
STUDY GOAL: INTERPRETABLE ML



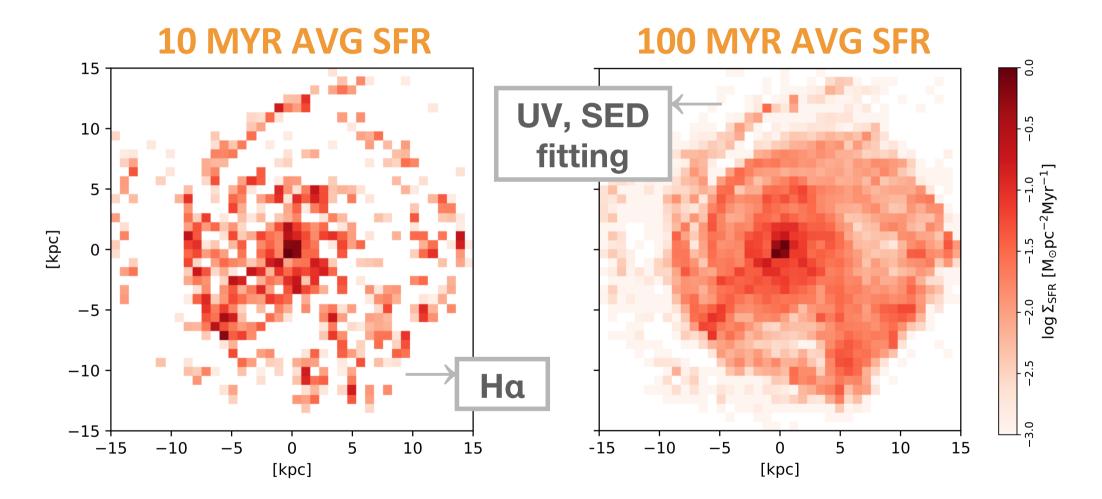
SYMBOLIC REGRESSION (PySR)

MOVIE CREDIT: MILES CRANMER 2023

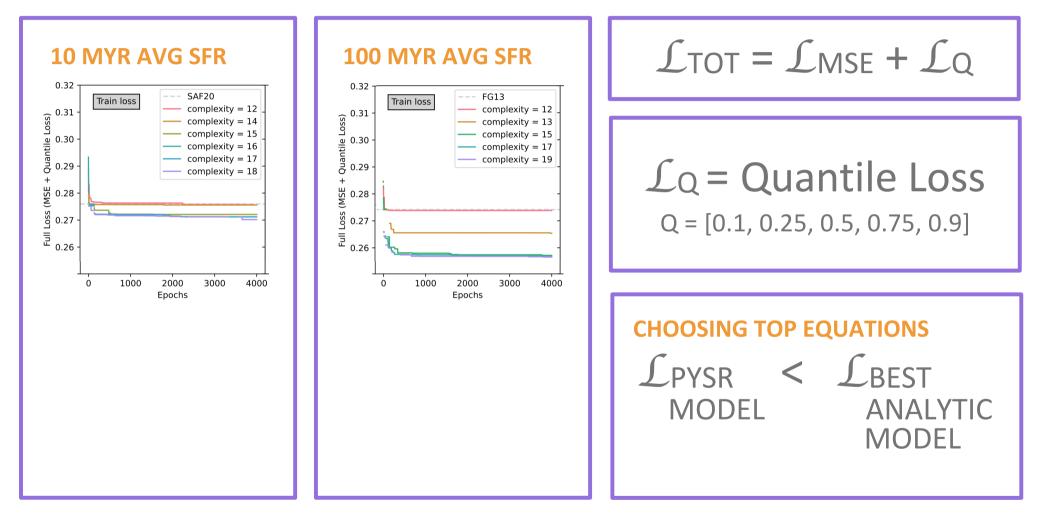
TOY DEMO: "SYNTHETIC FG13 DATASET"



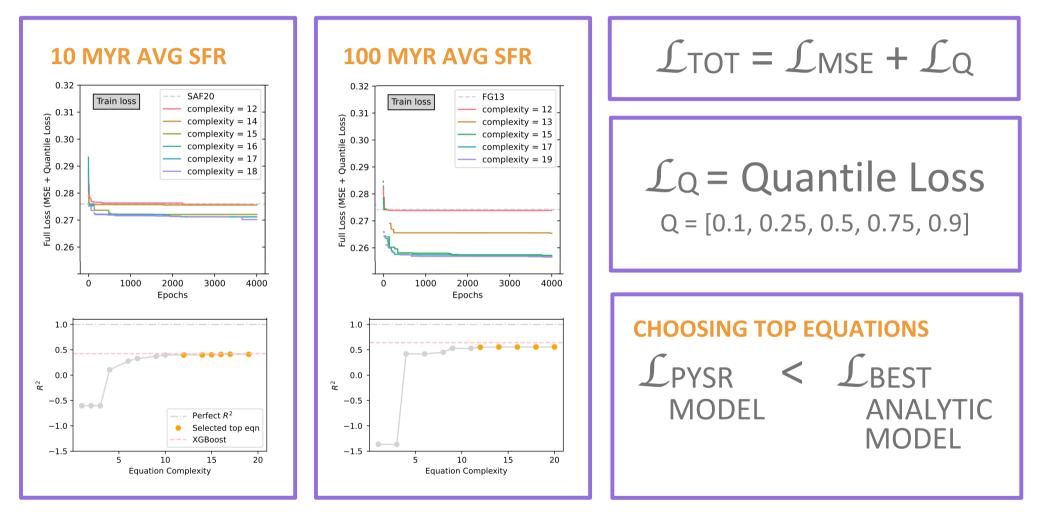
TWO TIMESCALES, TWO EXPERIMENTS



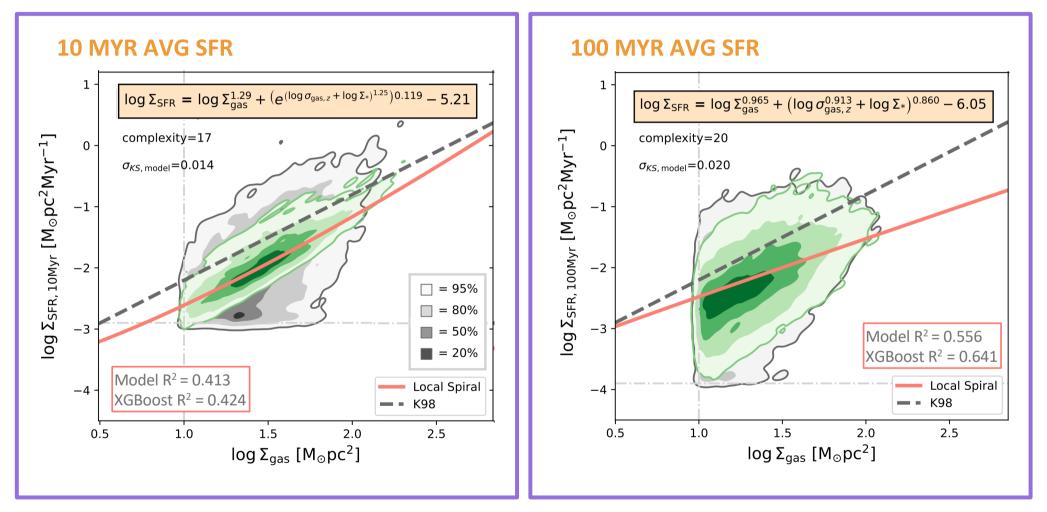
MACHINE LEARNING TRAINING



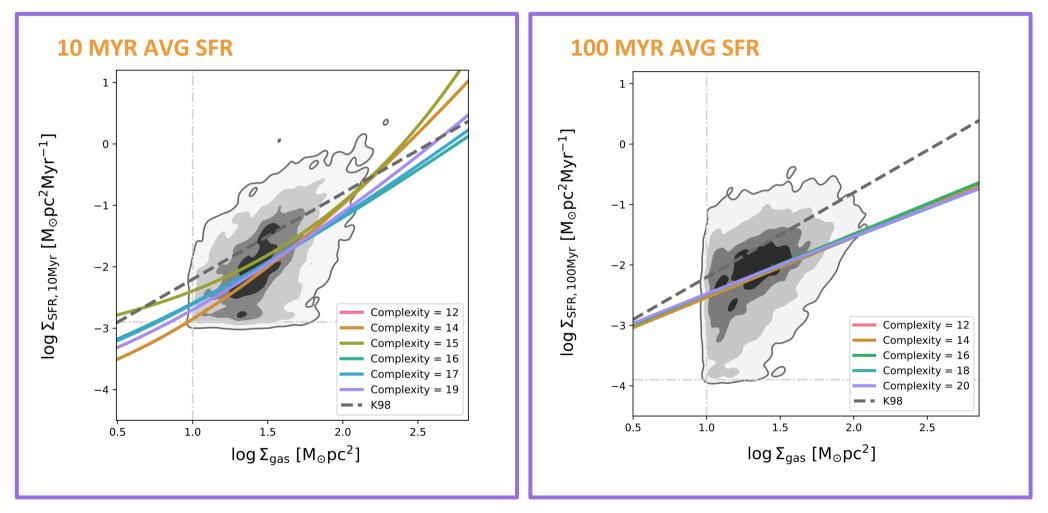
MACHINE LEARNING TRAINING



FIRE-2 FOUND EQUATION EXAMPLES



ALL FOUND EQUATIONS AT FIDUCIAL VALUES

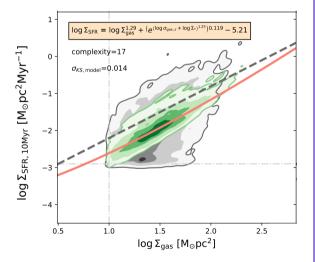


SUMMARY & POTENTIAL FUTURE ENDEAVOURS

STUDY ACHIEVEMENTS

- SR to understand observational & empirical SF scaling relations
- Applied to cosmological zoom-in simulations (FIRE-2)
- Found equations!

10 MYR AVG SFR

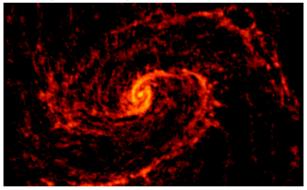


100 MYR AVG SFR $\log \Sigma_{SFR} = \log \Sigma_{gas}^{0.965} + (\log \sigma_{gas, Z}^{0.913} + \log \Sigma_*)^{0.860} - 6.05$ og $\Sigma_{SFR, 100Myr}$ [$M_{\odot}pc^2Myr^{-1}$] complexity=20 0 $\sigma_{KS, model} = 0.020$ -2 = 95% = 80% = 50% = 20% Local Spiral — - К98 0.5 1.0 1.5 2.0 2.5 $\log \Sigma_{gas} [M_{\odot}pc^2]$

FUTURE WORKS

• Apply to observational data eg. PHANGS

 \rightarrow consideration of errors during training



- Input into SAMs
- Architectural features to recover dispersion in feature space

TWO TIMESCALES, TWO EXPERIMENTS: SHAP

