(scalable, flexible, principled) Neural simulation-based supernova la cosmology

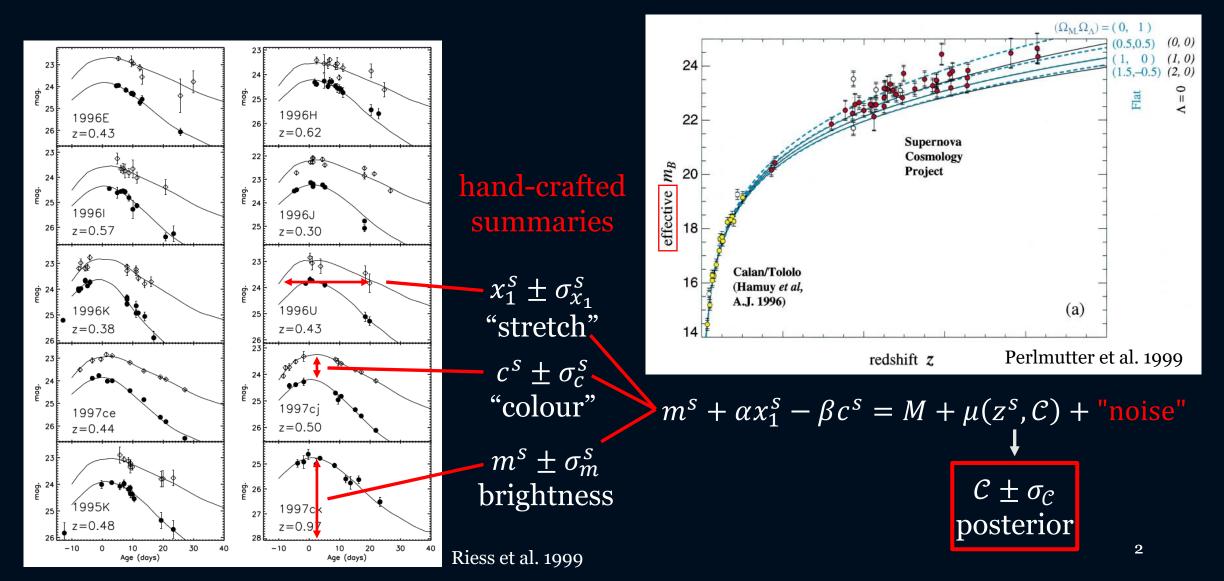
SICRET: <u>2209.06733</u>

SIDE-real: 2403.07871

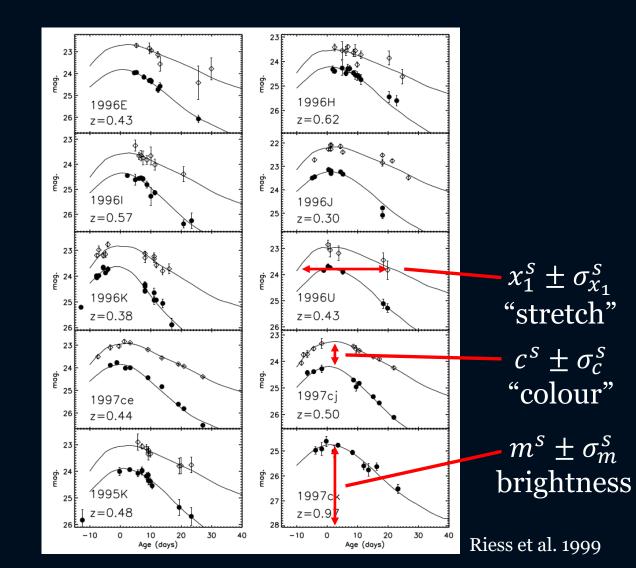
SimSIMS: <u>2311.15650</u>

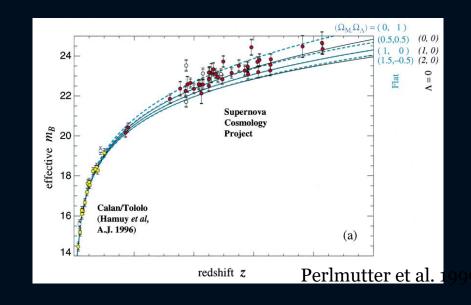
Konstantin Karchev with Roberto Trotta, Christoph Weniger

42 SNæ Ia = \$1 million (a Nobel prize)



42 SNæ Ia = 1 million





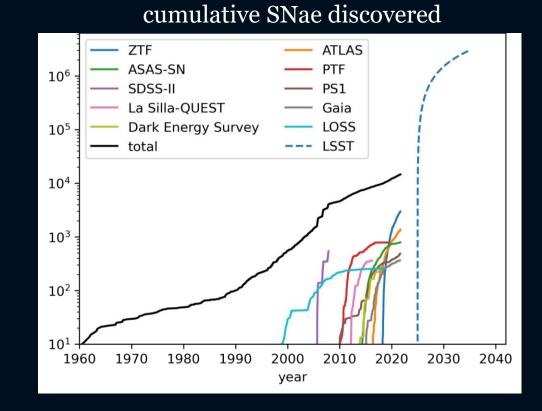
 $m^{s} + \alpha x_{1}^{s} - \beta c^{s} = M + \mu(z^{s}, \mathcal{C}) +$ "noise"

hand-crafted summary statistics:

- extract limited information
- unknown / complicated population distributions
- can lack full physical interpretation (e.g. intrinsic vs. extrinsic colour)

LSST: $\sim 10^6$ SNæ = \$1.9 billion

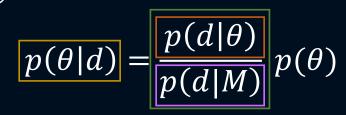
- Noisy light curves with irregular cadence
 - classic fits and GP take time...
- Modelling systematics
 - effect of dust on standardisation
 - correlations with host and evolution
- Photometric redshift
 - complicated uncertainty
- Selection biases
 - current "bias correction" is ad-hoc



Neural simulation-based inference

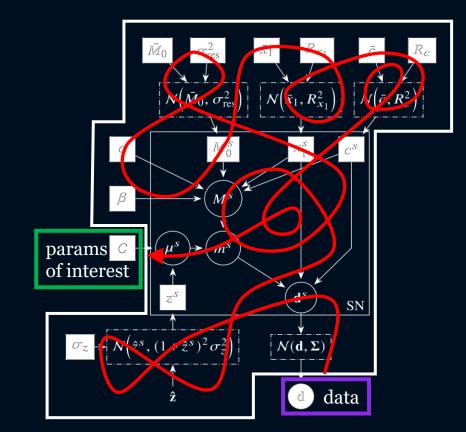
- A new paradigm for marginal inference
 > model = simulator (arbitrarily* complex)
- Leverages neural networks for inference
 - neural likelihood estimation
 - neural posterior estimation
 - <u>neural ratio estimation</u>
 - <u>neural model comparison</u>

> data = NN input (arbitrarily* big and complex)



Simulation-based inference

• The old paradigm: joint likelihood-based inference



 $p(\theta|d) \propto \int p(d|\theta, \nu) p(\theta, \nu) d\nu$

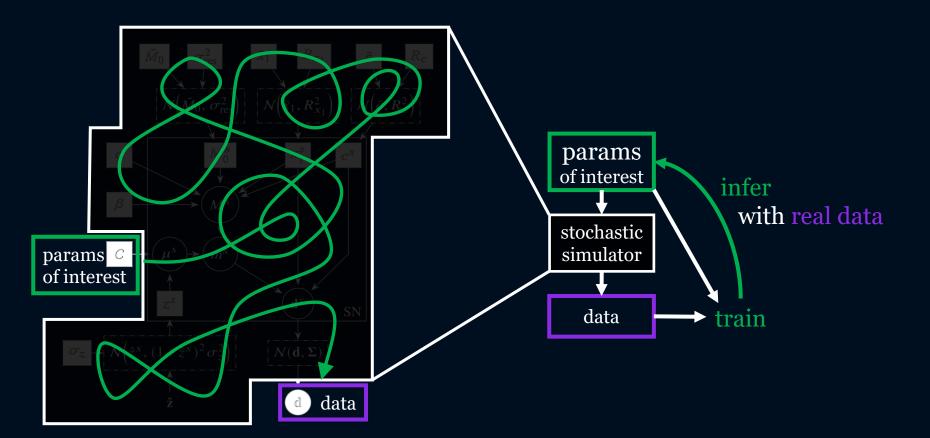
Requires

- calculating all probabilities
 - > limited to simple analytic descriptions
- inferring all parameters jointly
 > unfavourable scaling, e.g. O(N²)

Simulation-based inference

• Model = simulator

> can be arbitrarily complex

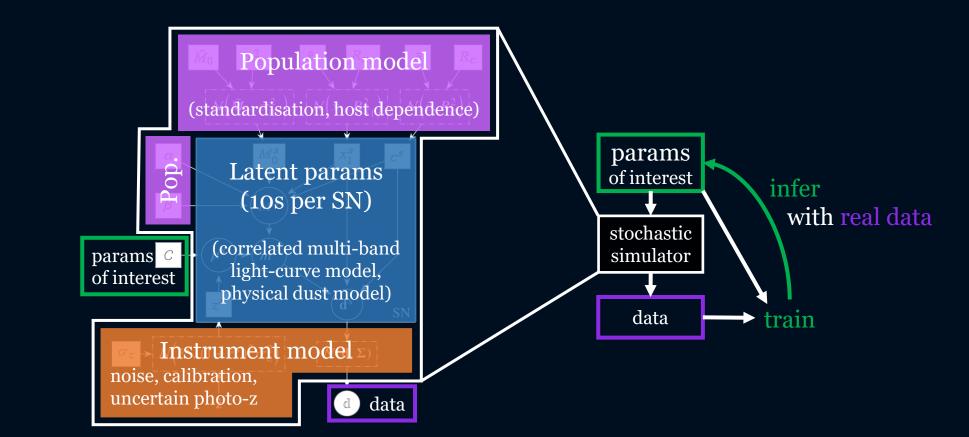


7

Simulation-based inference

• Model = simulator

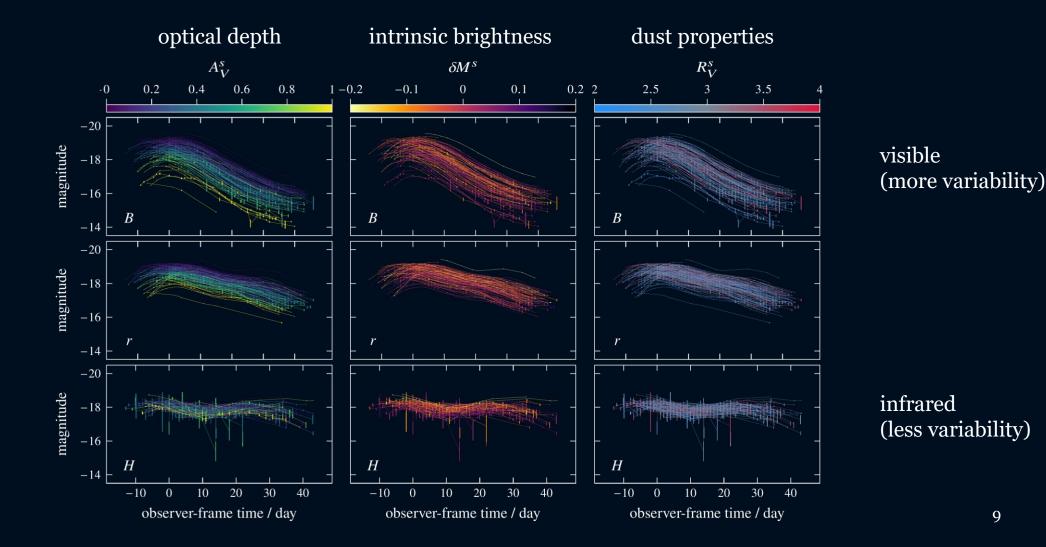
> often more interpretable / grounded / "physical"



SICRET (2023): cosmology with SALT parameters.

SIDE-real (2024): dust inference with the BayeSN light curve model

SLiCsim: realistic uncertain light curves

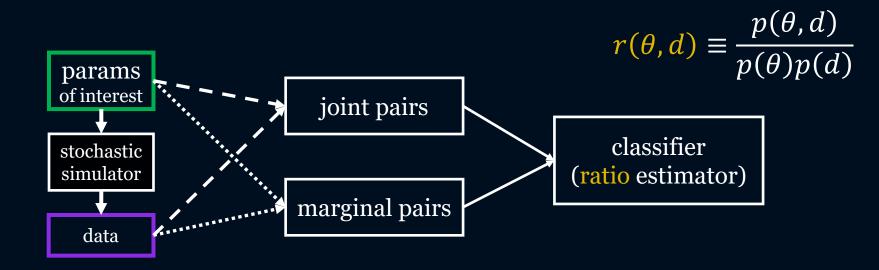


<u>SIDE-real</u> (2024): dust inference with the BayeSN light curve model

Neural simulation-based inference

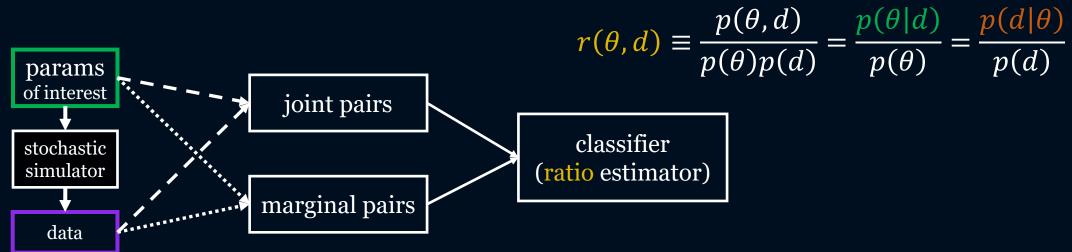
• Neural ratio estimation

$$-\text{BCELoss} = \mathbb{E}_{p(d|\theta)p(\theta)} \left[\ln \frac{\hat{r}_{\text{NN}}}{1+\hat{r}_{\text{NN}}} \right] + \mathbb{E}_{p(d)p(\theta)} \left[\ln \frac{1}{1+\hat{r}_{\text{NN}}} \right]$$



Neural simulation-based inference

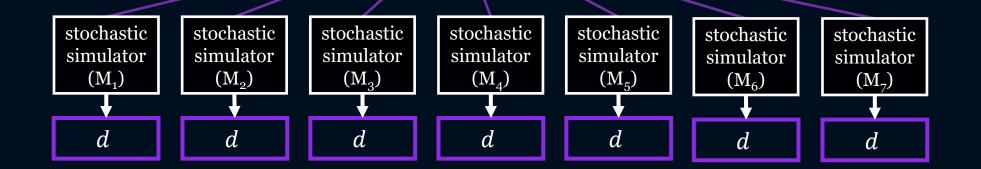
- Neural ratio estimation
 - simplicity of NN architecture (binary classifier)
 - flexibility with prior
 - allows Bayesian and frequentist inference



Beyond SB inference

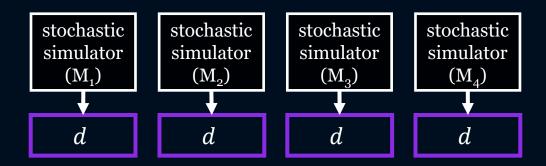
- Neural ratio estimation
- Neural model comparison

-NLLLoss = $\mathbb{E}_{p(d|M)p(M)}[\ln \hat{p}_{NN}(M|d)]$



Beyond SB inference

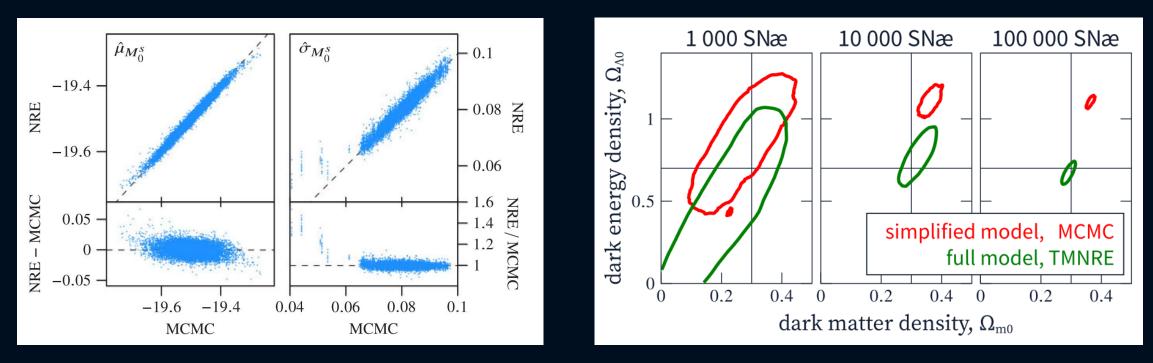
- Neural ratio estimation
- Neural model comparison
 - n-class classifier with trivial cross-entropy loss
 - gives direct access to Bayes factor / posterior over models



-NLLLoss = $\mathbb{E}_{p(d|M)p(M)}[\ln \hat{p}_{NN}(M|d)]$

Advantages of neural SBI

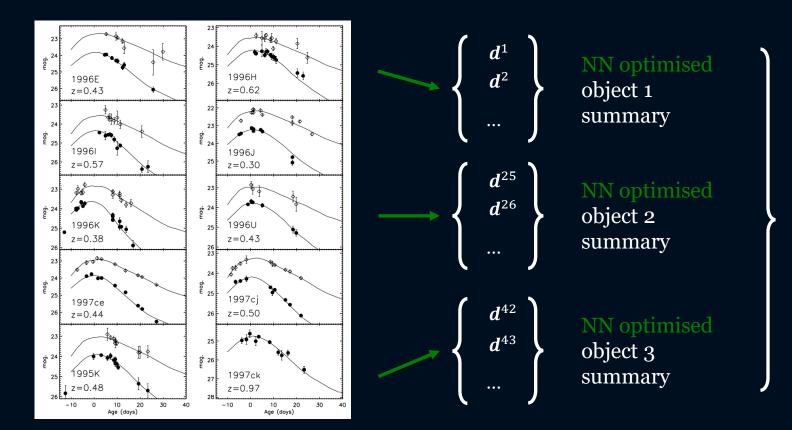
> scales to future-sized data sets> avoids biases due to simplifications



from <u>SICRET</u> (2023)

Advantages of neural SBI

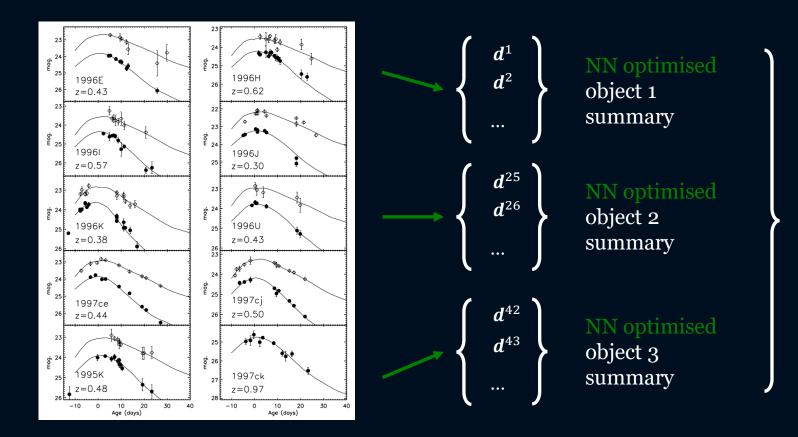
> data can be arbitrarily* complex



NN optimised full data set summary tailored for the inference task

Advantages of neural SBI

> data can be arbitrarily* complex: wealth of NN architectures



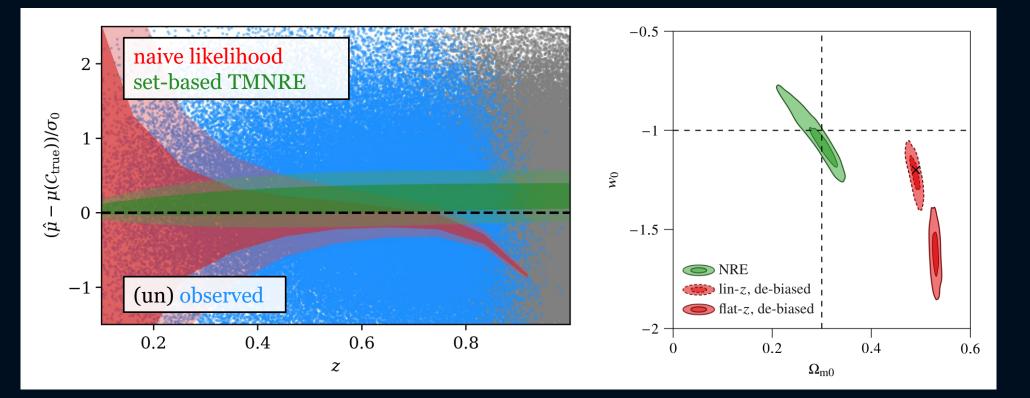
$$g_{NN}\left[heta, \sum_{i} f_{NN}\left(d_{i}, heta
ight)
ight]$$

Conditioned deep set (Zaheer et al. 2017),

Transformers?

<u>Unique</u> advantages of neural SBI

> intractable probabilities and varying-size data sets: 🙌 selection effects 🙌

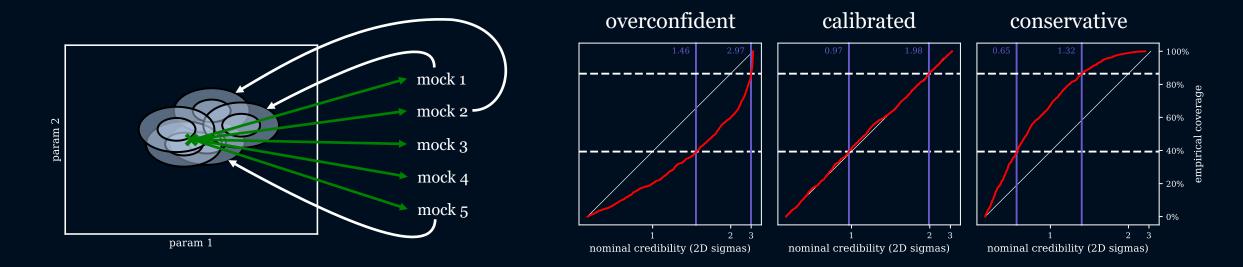


from RESSET: Ratio Estimation for Supernova Selection Effects (very soon™)

<u>Unique</u> advantages of neural SBI

• Amortised inference

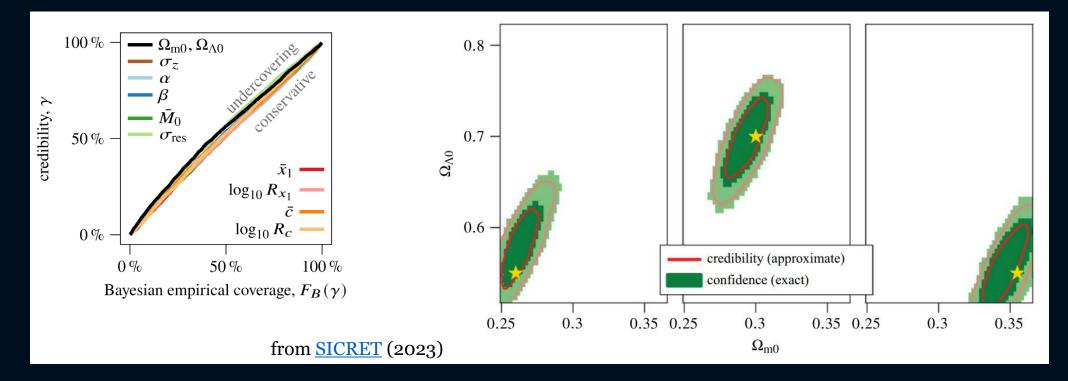
> can be quickly validated / calibrated on simulations



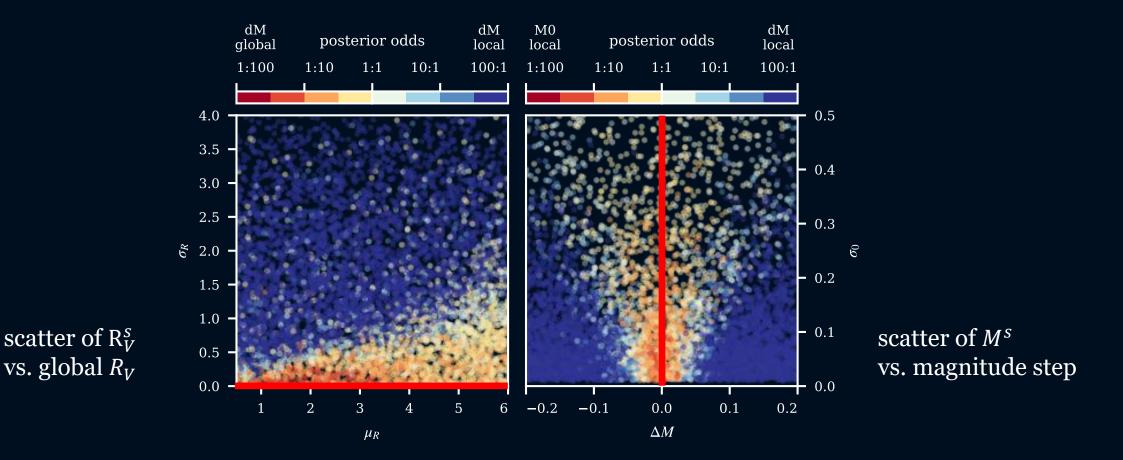
<u>Unique</u> advantages of neural SBI

• Amortised inference

- > can be quickly validated / calibrated on simulations
- > exact (frequentist) confidence regions

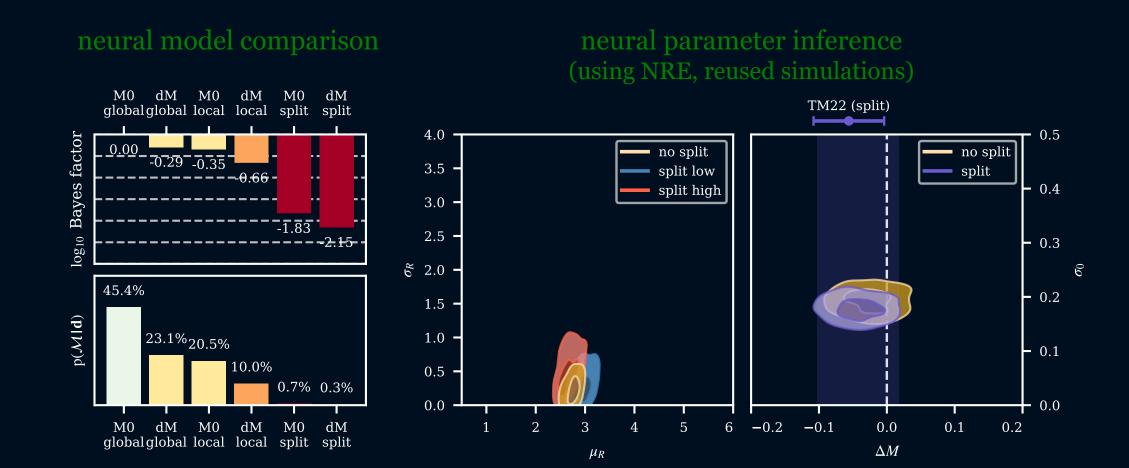


Amortised model comparison: Visualising Occam's razor



<u>SimSIMS</u> (2023): Model comparison for mass-magnitude step and dust laws

First results on real light curves!

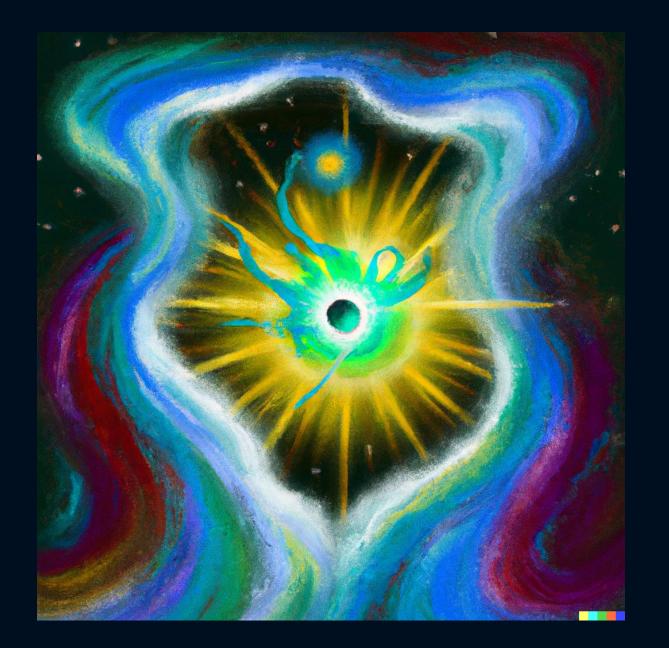


<u>SimSIMS</u> (2023): Model comparison for mass-magnitude step and dust laws

SNæ in the 2020s: Challenges and solutions

- Noisy light curves with irregular cadence -- deep sets
 - classic fits and GP take time...
- Modelling systematics
 - effect of dust on standardisation
 - correlations with host and evolution
- Photometric redshift
 - complicated uncertainty, contamination
- Selection biases
 - current "bias correction" is ad-hoc

- -- instant high-dim inference
- -- model selection
- -- flexible simulator
- -- stay tuned
- -- stay tuned
- -- SBI can handle it
- -- set-based SBI (very soon)
- -- fully principled SBI



Thank you for your attention!

"An illustration of a supernova explosion with swirling cosmic gases in the background, inspired by the surrealist paintings of Salvador Dali"

image by DALL·E, prompt by ChatGPT