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42 SNæ Ia = $1 million (a Nobel prize)



hand-crafted summary statistics:

• extract limited information

• unknown / complicated population 
distributions

• can lack full physical interpretation 
(e.g. intrinsic vs. extrinsic colour)
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LSST: ~106 SNæ = $1.9 billion

• Noisy light curves with irregular cadence
• classic fits and GP take time…

• Modelling systematics
• effect of dust on standardisation

• correlations with host and evolution

• Photometric redshift
• complicated uncertainty

• Selection biases
• current “bias correction” is ad-hoc
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Neural simulation-based inference

• A new paradigm for marginal inference
➢ model = simulator   (arbitrarily* complex)

• Leverages neural networks for inference
• neural likelihood estimation

• neural posterior estimation

• neural ratio estimation

• neural model comparison

➢ data = NN input   (arbitrarily* big and complex)
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Simulation-based inference

• The old paradigm: joint likelihood-based inference
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• calculating all probabilities
➢ limited to simple analytic descriptions

• inferring all parameters jointly
➢ unfavourable scaling, e.g. 𝒪 𝑁2  
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Simulation-based inference

• Model = simulator
➢ can be arbitrarily complex
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Simulation-based inference

• Model = simulator
➢ often more interpretable / grounded / “physical”
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SICRET (2023): 
cosmology with 
SALT parameters.

SIDE-real (2024):
dust inference with 
the BayeSN light 
curve model
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SLiCsim: realistic uncertain light curves
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Neural simulation-based inference

• Neural ratio estimation

 −BCELoss = 𝔼p 𝑑|𝜃 𝑝 𝜃 ln
Ƹ𝑟NN

1+ Ƹ𝑟NN
+ 𝔼p 𝑑 𝑝 𝜃 ln

1

1+ Ƹ𝑟NN
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Neural simulation-based inference
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• Neural ratio estimation
• simplicity of NN architecture (binary classifier)

• flexibility with prior

• allows Bayesian and frequentist inference



Beyond SB inference
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• Neural model comparison
• n-class classifier with trivial cross-entropy loss

• gives direct access to Bayes factor / posterior over models−NLLLoss = 𝔼p 𝑑|𝑀 𝑝 𝑀 ln Ƹ𝑝NN 𝑀|𝑑



Beyond SB inference

• Neural ratio estimation

• Neural model comparison
• n-class classifier with trivial cross-entropy loss

• gives direct access to Bayes factor / posterior over models
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Advantages of neural SBI

➢ scales to future-sized data sets

➢ avoids biases due to simplifications
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from SICRET (2023)

https://arxiv.org/abs/2209.06733


Advantages of neural SBI

➢ data can be arbitrarily* complex
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Advantages of neural SBI

➢ data can be arbitrarily* complex: wealth of NN architectures

16

𝒅1

𝒅2

𝒅25

𝒅26

𝒅42

𝒅43

…

…

…

NN optimised
object 1
summary

NN optimised
object 2
summary

NN optimised
object 3
summary

Zaheer et al. 2017

𝑔𝑁𝑁 𝜃, ෍

𝑖

𝑓NN (𝑑𝑖 , 𝜃)

Conditioned deep set
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https://arxiv.org/abs/1703.06114


Unique advantages of neural SBI

➢ intractable probabilities and varying-size data sets:  selection effects 
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from RESSET: Ratio Estimation for Supernova Selection Effects (very soon )
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Unique advantages of neural SBI

• Amortised inference
➢ can be quickly validated / calibrated on simulations
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Unique advantages of neural SBI

• Amortised inference
➢ can be quickly validated / calibrated on simulations

➢ exact (frequentist) confidence regions
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from SICRET (2023)

https://arxiv.org/abs/2209.06733


Amortised model comparison:
   Visualising Occam’s razor
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scatter of 𝑀𝑠

vs. magnitude step
scatter of R𝑉

𝑠

vs. global 𝑅𝑉

SimSIMS (2023): Model comparison for mass-magnitude step and dust laws

https://arxiv.org/abs/2311.15650


First results on real light curves!
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neural model comparison neural parameter inference
(using NRE, reused simulations)

SimSIMS (2023): Model comparison for mass-magnitude step and dust laws

https://arxiv.org/abs/2311.15650


SNæ in the 2020s: Challenges and solutions

• Noisy light curves with irregular cadence  -- deep sets

• classic fits and GP take time…                        -- instant high-dim inference

• Modelling systematics                                    -- model selection

• effect of dust on standardisation                     -- flexible simulator

• correlations with host and evolution               -- stay tuned

• Photometric redshift                                       -- stay tuned

• complicated uncertainty, contamination -- SBI can handle it

• Selection biases                                                -- set-based SBI (very soon)

• current “bias correction” is ad-hoc                  -- fully principled SBI
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Thank you for
your attention!
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“An illustration of a supernova 
explosion with swirling cosmic gases 
in the background, inspired by the 
surrealist paintings of Salvador Dali”

image by DALL·E, prompt by ChatGPT
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