TransformerPayne: Enhancing Spectral Emulation Accuracy and Data Efficiency by Capturing Long-Range Correlations

https://arxiv.org/abs/2407.05751

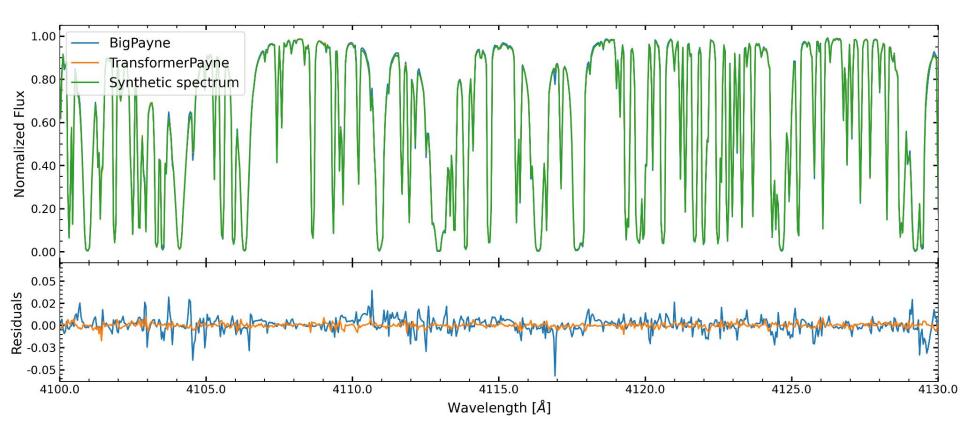
Tomasz Różański, Yuan-Sen Ting, Maja Jabłońska

Australian National University

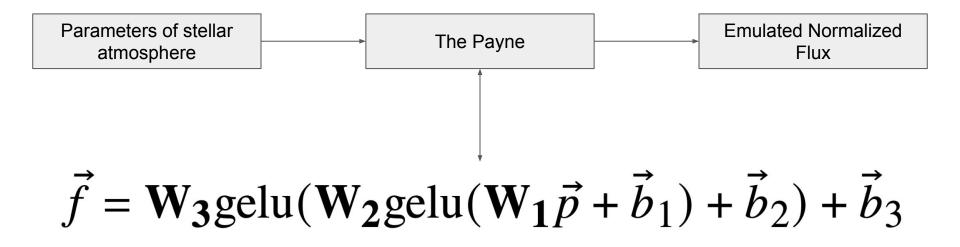
ML4Astro2, Catania, 10.07.2024

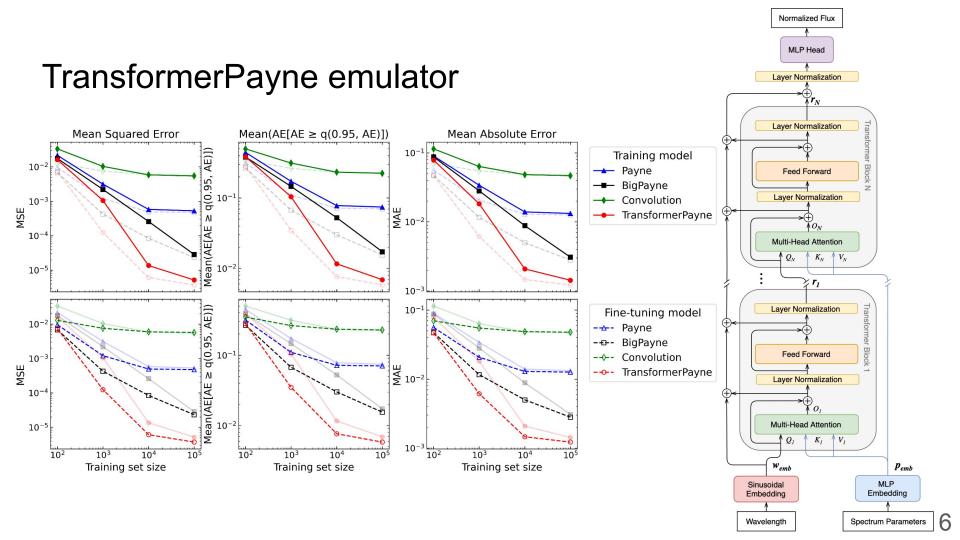
Background and motivation

- Inferring parameters of stellar atmospheres, including precise individual abundances, becomes computationally prohibitive when considering large surveys like 4MOST or WEAVE, which will collect millions of stellar spectra,
- One method to amortize the cost of inference is by developing precise and fast emulators that can replace spectral synthesis in pipelines,
- The current state-of-the-art emulator, The Payne (Ting et al., 2018), tends to saturate in prediction accuracy even as the size of the training dataset increases.

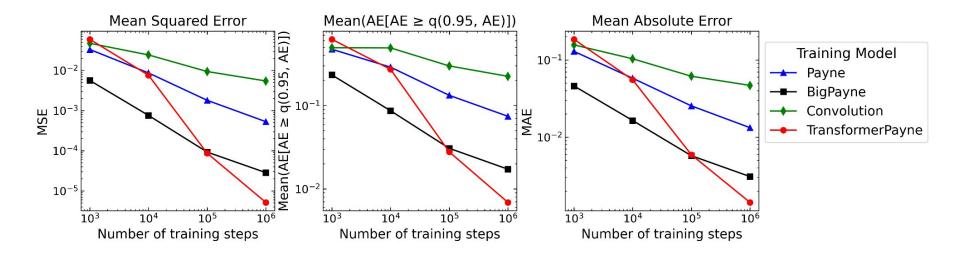

Goals

- Developing more precise spectrum emulation and reducing the number of spectra required to train an emulator with equivalent accuracy,
- Addressing the limitations of the small scale inherent in the original The Payne emulator,
- Developing a new architecture capable of efficiently handling correlations across widely separated wavelengths, such as those associated with spectral lines of the same elements in stellar spectra,
- Experimenting with fine-tuning as a way to increase data efficiency of training spectra emulators.

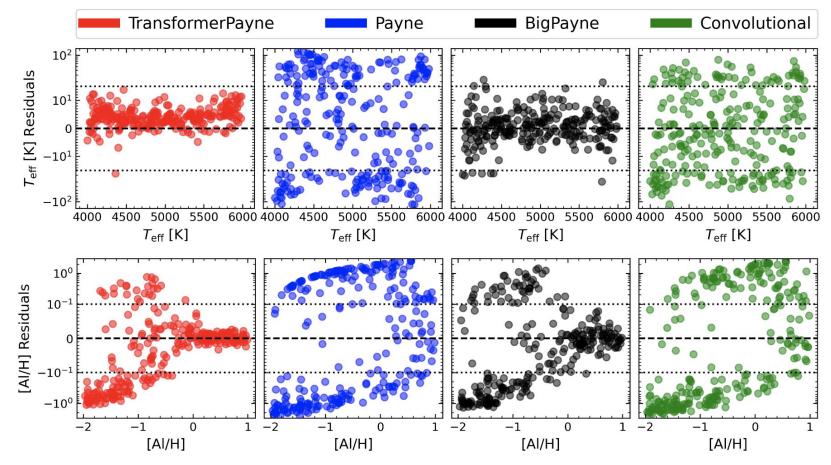

Pre-training and training datasets

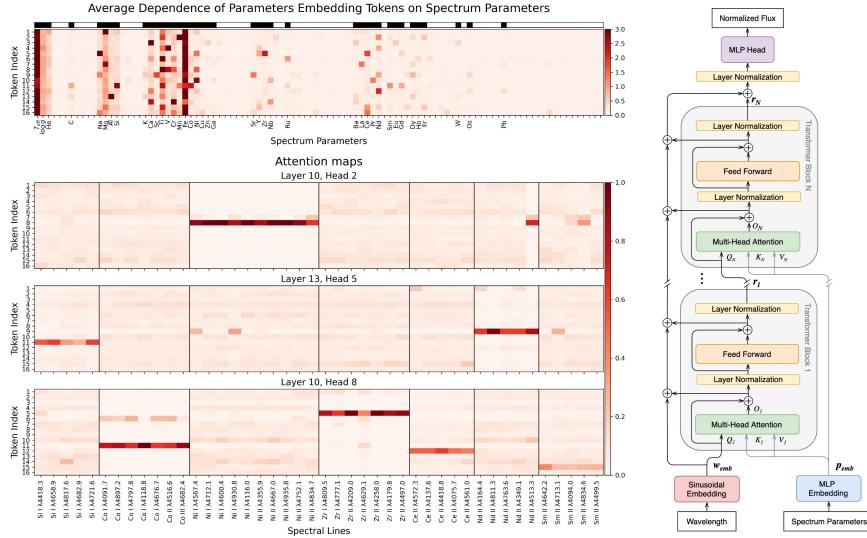

Grid definition	Pre-training	Training				
Effective Temperature	5000 K	[4000, 6000] K				
Surface Gravity	4.5	[4.0, 5.0]				
# Training Spectra	Up to 100000					
Wavelength range	[4000, 5000] Å					
# Wavelengths	22315					
Microturbulence, ξ	0 km/s					
Helium Abundance	[0, 0.1568]					
Other Abundances, $[X/H]^*$	[-	-2,1]				

Emulation quality overview



The Payne emulator


TransformerPayne emulator



Parameters inference

Parame	eter '	TransformerPayne (TP)) Th	The Payne (P) BigPay		ne (BP) Co		onvolutional (C)		
$T_{\rm eff}$ [K]		3.7027		7	43.3008		6.3656		24.3971			
log g			0.0050		0	0.0632		0.0080		0.0330		
$N_{\rm He}/N_{\rm t}$	ot	0.0029		9	0.0213		0.0034			0.0136		
		$-2.0 \le [X/H] < -1.0$			C.	$-1.0 \le [X/H] < 0.0$		$0.0 \le [X/H] \le 1$		/H] ≤ 1.0		
[X/H]	TP	Р	BP	С	TP	Р	BP	С	TP	Р	BP	С
С	0.4933	0.6964	0.5955	0.7195	0.3920	0.6510	0.4557	0.6436	0.4629	0.7459	0.5566	0.8036
Na	0.0313	0.2824	0.0493	0.1618	0.0076	0.1678	0.0167	0.1484	0.0070	0.0592	0.0102	0.0324
Mg	0.0058	0.1444	0.0142	0.0689	0.0052	0.0759	0.0109	0.0300	0.0068	0.0599	0.0081	0.0317
Al	0.3713	0.9599	0.5278	0.7450	0.1884	0.9245	0.4038	0.7979	0.0161	0.7982	0.0332	0.7952
Si	0.0096	0.2231	0.0244	0.1295	0.0089	0.1482	0.0223	0.0922	0.0077	0.0996	0.0133	0.0624
K	0.2222	0.5804	0.2996	0.5176	0.0208	0.3401	0.0423	0.3774	0.0230	0.4331	0.0415	0.5008
Ca	0.0057	0.0829	0.0092	0.0306	0.0054	0.0498	0.0077	0.0204	0.0052	0.0406	0.0064	0.0210
Sc	0.0105	0.1320	0.0183	0.0549	0.0090	0.0577	0.0103	0.0368	0.0090	0.0504	0.0088	0.0301
Ti	0.0052	0.0579	0.0073	0.0231	0.0050	0.0466	0.0062	0.0236	0.0053	0.0331	0.0055	0.0176
V	0.0064	0.1347	0.0275	0.0766	0.0055	0.0529	0.0069	0.0260	0.0055	0.0359	0.0071	0.0231
Cr	0.0057	0.0734	0.0098	0.0355	0.0045	0.0425	0.0068	0.0176	0.0051	0.0337	0.0057	0.0181
Mn	0.0068	0.1227	0.0142	0.0319	0.0053	0.0445	0.0072	0.0211	0.0059	0.0390	0.0074	0.0191
Fe	0.0042	0.0516	0.0060	0.0192	0.0038	0.0338	0.0050	0.0175	0.0045	0.0333	0.0073	0.0204

Parameters inference

10

Pemb

Summary

- Scaling The Payne emulator by increasing the number of layers and the number of neurons in each layer prevents it from saturating as the number of training spectra increases,
- Parametrizing the emulator explicitly as a function of wavelength and incorporating flexible attention blocks leads to more precise and data-efficient emulation,
- Fine-tuning serves as a method to enhance data efficiency in stellar spectrum emulation,
- An interpretability study reveals that the TransformerPayne emulator naturally learns physically relevant features without direct supervision.

https://arxiv.org/abs/2407.05751