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Multiscale gas dynamics in galaxies

https://www.sron.nl/missions-astrophysics/sto2

10 ~ 102 pc

Cold (~10K)

Hot (~107 K)

Supernova feedback

• has impacts across ISM- 
and galaxy-scale

• drives gas dynamics. ‒ 
suppress star formation 
rate and bumps outflow

• has different behavior of 
outflow/inflow depending 
on the mass of the host 
galaxy
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Supernovae quantify or trigger star-formation?

NGC 628  Watkins+2023a,b
• Tentative evidence of star-formation on shells 
• This process might form 14-30% of massive 
stars in the Milky Way (Thompson+2012)

• Supernovae can compress clouds/filaments, 
which can be star-forming regions.

Arzoumanian+2023

Star-by-star galaxy simulations, resolving individual stars and stellar feedback

How many stars have been born by SNe?



ASURA-FDPS (N-body/SPH) 
(Saitoh+08,09, Iwasawa+16, Hirashima+23a)

• Gravity + Hydrodynamics (DISPH; saitoh+13)
• Radiative Cooling/Heating (Ferland+17)
• Star formation (Hirai in prep.)
• Feedback

• SNe Ia/II, AGB, Neutron star merger
• Chemical evolution (CELib; Saitoh17)
• FUV background
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Galaxy Simulations Using SPH*

*SPH: Smoothed Particle Hydrodynamics
[1] https://www.youtube.com/watch?v=Rdd9KAUcvgQ
[2] Applebaum et al. (2021)
[3] Grand et al. (2021)

The formation of the galaxy [1].

<102 kpc

10 ~ 102 pc
~102 yr

~108 yr

Can we go to “star-by-star” resolution??

• About to represent every single 
star in simulations, but...
• Recent studies [2, 3]： 10!M⊙

• Our goal (ASURA-FDPS)： < 10M⊙

https://www.youtube.com/watch?v=Rdd9KAUcvgQ
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A Challenge in multiscale simulations 

~100 pc~100 kpc

~108 yr ~103 yr

Supernovae are much smaller than galaxies but still impactful on the evolution.

NASA/JPL-Caltech/ESO/R. Hurt
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Overheads in Galaxy Formation Simulations

Strong Scaling of GADGET-4
 (Based on Figure 63 in Springel et al. 2021)

• Due to small timescale regions (e.g. SNe), 
the communication overhead occurs.

• Even the latest supercomputers cannot 
solve it (e.g., Fugaku has ~106 CPU cores).GOOD

BAD

The Number of CPU cores

The parallelization efficiency saturates at ~103 CPU cores.

e.g., 
• GADGET-4(Springel+21)
• DC Justice League (Applebaum+21)
• Fire-2(Hopkins+18)

-> Decrease the total number of calculation steps 
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Simulation with Machine Learning Model

Main nodes: 1k ～ 128k

Numerical integration of galaxy Pool nodes:
<50
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Convert from 
particles to 
grid data

DL prediction Convert to
particle data

Have ML handle bottlenecks - SNe -.



Temperature 10 [K]
Mean ambient density 40 ~ 60 [cm-3]
Input energy 1051 [erg]
Total mass 106 [M⨀]
Mass of a gas particle 1 [M⨀]
Softening parameter 0.5 [pc]

The initial condition for SN simulations in inhomogeneous turbulent clouds
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Training Data (3D cartesian grids)

Interpolation using 

SPH summation

643 voxels

60 pc

60 pc
60 pc
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• Ronneberger et al. 2015
• CNN-based
• Decoder à Shrink
• Encoder à Enlarge

3D U-Net

(a) Raw image (b) Segmentation

Shrink Enlarge

t=0 t=0.1Myr
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Prediction result
An inhomogeneous shell emerges from the dense filament blocking in both sim and pred.

10 pc
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Physical
quantities

Interpolation 
with SPH 
summation

MCMC
(Gibbs Sampling)

t=t0 yr t=t0 + 105 yr

The rest of the region in the galaxy
Δt ~105 yr

SN Δt = ~102 yr

Surrogate modeling for SN feedback

U-Net (CNN-based)

Bypass with ML and MCMC 

Please take a look at Hirashima+23b, 
arXiv:2311.08460 for more details! 
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Incorporating ML with simulations
Integration Integration

IntegrationDL prediction
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Full SPH (dtmin~200yr) SPH + ML  (dt ~ 2000yr)

Test #1: SN feedback in Molecular Clouds 
At t=0.1Myr, the particles within 60 pc3 around a SN are incorporated with the 
parent simulation.
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Properties of the dwarf galaxy simulations

Tag SN feedback FUV backgound Time-stepping
SN-noFUV Dump thermal energy Variable
SN-FUV Dump thermal energy ✔ Variable
SN-noFUV-ML Dump thermal energy (<1 cm-3)

Surrogate modeling (> 1 cm-3)
Fixed
2000 yr

SN-FUV-ML Dump thermal energy (<1 cm-3)
Surrogate modeling (> 1 cm-3)

✔ Fixed
2000 yr

Initial Condition: Isolated disk dwarf galaxy
• Mvir ~ 1010 Msun
• Mbaryon ~ 107 Msun
• mbaryon ~ 4 Msun
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Test #2: galaxy simulations with ML (Preliminary)

t=100 Myr

x4.0 x3.8

Our new approach is faster by a factor of four!
Superbubbles made of multiple 
supernovae are resolved.



15

Summary

Reference:
1) Hirashima+23a, MNRAS, 526, 3
2) Hirashima+23b, NeurIPS2023-AI4Science, arXiv:2311.08460

•✅ Implement a surrogate model for SN feedback with our 
simulation code for star-by-star simulations
• Test run:

• ✅ Molecular Clouds (106 Msun)
• 7 times faster
• Energy and momentum are converged better than low-res sims.

• On-going: isolated dwarf galaxy (1010 Msun)
• 4times faster
• Checking convergence of SFH and mass/energy loading factor

• Future work
• LMC size (1011 Msun)
• MW size (1012 Msun)



• N-body/SPH
• Dark matter, stars, and gas are 
implemented as particles.

• In every timestep, physical quantities 
are updated by solving interactions.

• ~1010 Particles for MW-sized galaxy
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Basic physical models in galaxy simulations

• Equation of Motion
• Gravity
• Hydrodynamics

• Equation of State
• Navier-Stokes equation
• Cooling/Heating

• Radiation and so on
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Surrogate Modeling for fluid dynamics

Zhou et al. (2024)

• The loss function is tuned to 
learn specific physics/PDEs.

• Hard to generalize to new tasks

• Directly learn physics from 
simulation data

• It is hard to generalize to the 
new parameter set

• Methods to surrogate simulations governed by partial differential equations (PDE)
• Choose methods by looking at the generalizability and scalability
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Data-Driven Surrogate Models
ML models are learning simulations as neural operators.

60 pc

Dataset Model Channels Simulation
Duarte et al. 2022 an accreting black hole 2D-Unet Density PLUTE (mesh)
Hirashima et al. 
2023a, 2302.00026

Blast wave by a SN in 
turbulent molecular cloud

3D-MIM Density & Velocity SPH(ASURA-
FDPS)

McCabe et al. 2023 Multiple CFD simulations 2D/3D-ViT Density, Pressure, 
& Velocity

PDE-Bench
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Comparison to low-resolution simulation
Low-res. Sims cannot resolve the blast wave.
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Fidelity Evaluation in Thermal Energy

High-
res.

High-res.

Low-res. Ours

• Compared to the low-res. sims., our method can duplicate the 
thermal energy more accurately.
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Fidelity Evaluation in Outer Momentum

High-
res.

High-
res.

Low-res. Ours

• Both the low-res. sims. and our reconstruction have biases. 



Overlapping

Full SPH (dtmin~200yr) SPH + ML  (dt ~ 2000yr)


