

Credit: ESO/PESSTO/S. Smartt Butusova Elena/Shutterstock.com Art tools design/Shutterstock.com

Surrogate Modeling for Supernova Feedback toward Star-by-star Simulations of Milky-Way-sized Galaxies

Keiya Hirashima¹ With Kana Moriwaki¹, Michiko S. Fujii¹, Yutaka Hirai^{2,3}, Takayuki R. Saitoh⁴, Junichiro Makino⁴, Ulrich Steinwandel⁵, and Shirley Ho⁵ Final year PhD student

¹University of Tokyo, Japan, ²Tohoku University, Japan, ³University of Notre Dame, USA 4Kobe University, Japan, 5CCA, Flatiron Institute, USA

and ML4ASTRO2 and ML4ASTRO2 and ML4ASTRO2

Multiscale gas dynamics in galaxies

https://www.sron.nl/missions-astrophysics/sto2

Supernova feedback

- has impacts across ISMand galaxy-scale
- drives gas dynamics. suppress star formation rate and bumps outflow
- has different behavior of outflow/inflow depending on the mass of the host galaxy

1

Supernovae quantify or trigger star-formation?

How many stars have been born by SNe?

• Supernovae can compress clouds/filaments, which can be star-forming regions.

NGC 628 Watkins+2023a,b

- Tentative evidence of star-formation on shells
- This process might form 14-30% of massive stars in the Milky Way (Thompson+2012)

Star-by-star galaxy simulations, resolving individual stars and stellar feedback

Galaxy Simulations Using SPH*

*SPH: Smoothed Particle Hydrodynamics [\[1\] https://www.youtube.com/watch?v=Rdd9KAUcvg](https://www.youtube.com/watch?v=Rdd9KAUcvgQ)Q [2] Applebaum et al. (2021) [3] Grand et al. (2021) The formation of the galaxy [1].

ASURA-FDPS (N-body/SPH)

(Saitoh+08,09, Iwasawa+16, Hirashima+23a)

- Gravity + Hydrodynamics (DISPH; saitoh+13)
- Radiative Cooling/Heating (Ferland+17)
- Star formation (Hirai in prep.)
- Feedback
	- SNe Ia/II, AGB, Neutron star merger
- Chemical evolution (CELib: Saitoh17)
- FUV background
- About to represent every single star in simulations, but...
	- Recent studies $[2, 3] : 10^3 M_{\odot}$
	- Our goal (ASURA-FDPS): $< 10 M_{\odot}$

3 Can we go to "star-by-star" resolution??

<102 kpc

A Challenge in multiscale simulations

Supernovae are much smaller than galaxies but still impactful on the evolution.

NASA/JPL-Caltech/ESO/R. Hurt

4

Overheads in Galaxy Formation Simulations

The parallelization efficiency saturates at $\sim 10^3$ CPU cores.

e.g.,

- GADGET-4(Springel+21)
- DC Justice League (Applebaum+21)
- Fire-2(Hopkins+18)
- Due to small timescale regions (e.g. SNe), the communication overhead occurs.
- Even the latest supercomputers cannot $\frac{1}{\sqrt{2}}$ solve it (e.g., Fugaku has $\sim 10^6$ CPU cores).
	- -> Decrease the total number of calculation steps

Simulation with Machine Learning Model

Have ML handle bottlenecks - SNe -.

Training Data (3D cartesian grids)

The initial condition for SN simulations in inhomogeneous turbulent clouds

7

3D U-Net

- Ronneberger et al. 2015
- CNN-based
- Decoder \rightarrow Shrink
- \cdot Encoder \rightarrow Enlarge

(a) Raw image (b) Segmentation

Fig. 1. U-net architecture (example for $32x32$ pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations.

Prediction result

An inhomogeneous shell emerges from the dense filament blocking in both sim and pred.

Surrogate modeling for SN feedback

The rest of the region in the galaxy Δt ~10⁵ yr

Please take a look at Hirashima+23b, arXiv:2311.08460 for more details!

Incorporating ML with simulations

Test #1: SN feedback in Molecular Clouds

At $t=0.1$ Myr, the particles within 60 pc³ around a SN are incorporated with the parent simulation.

Properties of the dwarf galaxy simulations

Initial Condition: Isolated disk dwarf galaxy

- M_{vir} ~ 10¹⁰ Msun
- $M_{baryon} \sim 10⁷ Msun$
- m_{baryon} ~ 4 Msun

Test #2: galaxy simulations with ML (Preliminary)

Summary

- ✅ Implement a surrogate model for SN feedback with our simulation code for star-by-star simulations
- Test run:
	- **V** Molecular Clouds (10⁶ Msun)
		- 7 times faster
		- Energy and momentum are converged better than low-res sims.
	- On-going: isolated dwarf galaxy (10¹⁰ Msun)
		- 4times faster
		- Checking convergence of SFH and mass/energy loading factor
- Future work
	- LMC size (10¹¹ Msun)
	- MW size (10¹² Msun)

Reference:

1) Hirashima+23a, MNRAS, 526, 3

2) Hirashima+23b, NeurIPS2023-AI4Science, arXiv:2311.08460

Basic physical models in galaxy simulations

• N-body/SPH

- Dark matter, stars, and gas are implemented as particles.
- In every timestep, physical quantities are updated by solving interactions.
- ~10¹⁰ Particles for MW-sized galaxy

• Equation of Motion

- Gravity
- Hydrodynamics
	- Equation of State
	- Navier-Stokes equation
	- Cooling/Heating
- Radiation and so on

$$
P = (\gamma - 1)\rho u,
$$

\n
$$
\frac{d\rho}{dt} = -\rho \nabla \cdot \mathbf{v},
$$

\n
$$
\frac{d^2r}{dt^2} = -\frac{\nabla P}{\rho} + a_{\text{visc}} - \nabla \Phi,
$$

\n
$$
\frac{du}{dt} = -\frac{P}{\rho} \nabla \cdot \mathbf{v} + \frac{\Gamma - \Lambda}{\rho},
$$

Surrogate Modeling for fluid dynamics

- Methods to surrogate simulations governed by partial differential equations (PDE)
- Choose methods by looking at the generalizability and scalability

- The loss function is tuned to learn specific physics/PDEs.
- Hard to generalize to new tasks
- Directly learn physics from simulation data
- It is hard to generalize to the new parameter set

Zhou et al. (2024)

Data-Driven Surrogate Models

ML models are learning simulations as neural operators.

Figure 9. Density predictions by the multi-sim direct model, compared with the simulation PNST1 at $t = 172035M$

Comparison to low-resolution simulation

Low-res. Sims cannot resolve the blast wave.

Fidelity Evaluation in Thermal Energy

• Compared to the low-res. sims., our method can duplicate the thermal energy more accurately.

Fidelity Evaluation in Outer Momentum

• Both the low-res. sims. and our reconstruction have biases.

