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Hype, myth, or real deal?





Why hasn't astronomy had its
"AlphaFold" moment yet?"



Most AI in Astronomy focuses on extending statistical methods
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or building effective brokers / classifiers

Rubin Observatory



Improving individual downstream tasks with
AI will not revolutionize astronomy



The Bitter Lesson - Rich Sutton, 2019



The Bitter Lesson - Rich Sutton, 2019

"We should build in only the meta-methods that can find and
capture this arbitrary complexity.

Essential to these methods is that they can find good
approximations, but the search for them should be by our methods,
not by us.

We want AI agents that can discover like we can, not which contain
what we have discovered."
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Visualizing the knowledge graph and evolution in astronomy

Individual nodes =
25,000 concepts

Dark matter
Dark energy

Gaussian Process
Stellar atmospheres



Quantifying the growth of the field -- by groups of concepts
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The number of ML concepts in astronomy has not grown
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Quantifying the cross-domain interaction:
How technical concepts inspire scientific ones



Cross-domain linkage shows a two-phase evolution
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Interest in AI x Astronomy outpaces technological development
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Machine learning is becoming increasingly
integrated into astronomy,

However, the field has been slow to incorporate new
concepts and techniques.
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Astronomy already has a successful standard model
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Toward an AI Astronomer
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Human "intuition" +
experience



Perform "reinforcement learning" (policy learning)
without a reward function



Enabling LLM agents to learn through real-
world exploration and interaction.

Perform "reinforcement learning" (policy learning)
without a reward function
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Action space is vast and transcends mathematical formalism

Extinction model ?



Action space is vast and transcends mathematical formalism

Young stellar
population?



Introducing Mephisto*

* In the classic tale of Faust, Mephisto is a demon who
tempts the scholar Faust with knowledge and power in
exchange for his soul.
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JWST's JADES SurveyCIGALE SED Fitting Codes

A case study: Fitting galaxy spectral energy distributions
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Example of learned "knowledge"

" If the �t is overestimated in the UV and optical bands,

increasing the E_BV_lines parameter may lead to a
better �t by accounting for more dust attenuation in

these bands. "



Reinforcement learning with LLM outperforms native LLMs
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While we are far from AGI, LLMs are
prolific enough to understand

basic causality through actions



 Reason about all astronomical objects in the cosmos
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capable model vs. cost efficiency

e.g., GPT-4o   (this study)

In the SED case study, we need ~0.1M tokens per source

= USD 1 per source ...
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1B sources = $1 billion
e.g., Roman Space Telescope, Euclid Space Telescope

~ approximately the build cost
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The curation of an astronomy benchmark dataset

 (i.e. as part of the Aurora-GPT effort with the Argonne National Laboratory)



But how do we know which model is better?



40 pages of all you
need to know about
LLM for astronomy



Proprietary models



Open-weights models
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GPT-4o
Claude-3.5-Sonnet
Claude-3.0-Opus

Cheaper but
not as good

Not Good Enough



 Open-weights large language models?
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Open-weights models are catching up in 2024
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 Open-source large language models
are as good as the closed-source models

at the ~70B level
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LLaMA-3 70b throughput on four A100 GPUs

= ~ 100 tokens / second

1 SED source = 15 GPU minutes

1B sources = 10M GPU days

A cluster with 1000 A100 GPUs 
running for 30 years



Can the light-weight ~7B open-source models
perform equally with some "fine-tuning" ?
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Natural Language Processing
experts

Oak Ridge
National Lab

Argonne
National Lab

Previously UniverseTBD -> now AstroMLab (astromlab.org)

Harvard-Smithsonian ADS

U. Ilinois 
Urbana-
Champaign
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The gain is negligible for
stronger models

Arora, YST+, in prep.



Current LLMs remain brittle, and efforts to
improve them through continual pretraining

have yet to yield significant gains. 



So what should we do ?
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Warren Buffet :

"The trick is, when there is nothing to do, do nothing."

"The stock market is designed to transfer money from
the Active to the Patient."  
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0.1 Yuan
per 1 million tokens



= 0.03 Euro



= 40 Euro



LLM
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Summary :

Despite the surge in interest, the knowledge graph reveals a
striking lack of innovation at the intersection of AI and astronomy.

Current research prioritizes tool development over creating meta-
methods that could accelerate the discovery of 'unknown unknowns.'

By interacting with real-world data, LLM agents can distill causal
relationships, conducting end-to-end research autonomously.

The astronomical cost of applying at scale limits our progress, but
the growth in GPU computing power will inevitably overcome this.


