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Hype, myth, or real deal?
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Why hasn't astronomy had its
"AlphaFold” momentyet?"



Most Al in Astronomy focuses on extending statistical methods
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or building effective brokers / classifiers

PLAsSTICC Training Sample

SNII
(1,193)

Rubin Observatory



Improving individual downstream tasks with
Al will not revolutionize astronomy



The Bitter Lesson - Rich Sutton, 2019



The Bitter Lesson - Rich Sutton, 2019

"We should build in only the meta-methods that can find and
capture this arbitrary complexity.

Essential to these methods is that they can find good
approximations, but the search for them should be by our methods,
not by us.

We want Al agents that can discover like we can, not which contain
what we have discovered.



@ Where are we in Al for Astronomy - What's the problem?

@ \What could be the AlphaFold moment for astronomy?

@ How do we get there in a cost-effective way?
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Knowledge Graph in Astronomical Research with Large Language Models:
Quantifying Driving Forces in Interdisciplinary Scientific Discovery
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Abstract

Identifying and predicting the factors that con-
tribute to the success of interdisciplinary research
is crucial for advancing scientific discovery. How-
ever, there is a lack of methods to quantify the in-
tegration of new ideas and technological advance-
ments in astronomical research and how these new
technologies drive further scientific breakthroughs.
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\/isualizing the know/edge graph and evolution in astronomy

Individual nodes =
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Quantifying the growth of the field -- by groups of concepts
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The number of ML concepts in astronomy has not grown
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Quantifying the cross-domain interaction:
How technical concepts inspire scientific ones



Cross-domain linkage shows a two-phase evolution
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Cross-domain linkage shows a two-phase evolution
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N-body solver being developed
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Cross-domain linkage shows a two-phase evolution
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N-body solver being deployed to simulations
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Cross-domain linkage shows a two-phase evolution
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Cross-domain linkage shows a two-phase evolution
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Interest in Al x Astronomy outpaces technological development
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Machine learning is becoming increasingly
integrated into astronomy,

However, the field has been s/ow to incorporate new
concepts and techniques.



Astronomy is not biology
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Astronomy already has a successful standard model
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@ Where are we in Al for Astronomy - What's the problem?

@ What could be the AlphaFold moment for astronomy?

@ How do we get there in a cost-effective way?
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Toward an A/ Astronomer



Research is essentially a reinforcement learning process
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Research is essentially a reinforcement learning process
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Research is essentially a reinforcement learning process

Evaluate the state

propose new theory or data
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Research is essentially a reinforcement learning process

Evaluate the state

propose new theory or data
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But most “state” of research cannot be
mathematically defined



But most “state” of research cannot be
mathematically defined

Human "“/ntuition” +
experience




Perform "reinforcement learning" (policy learning)
without a reward function



Perform "reinforcement learning" (policy learning)
without a reward function

Enabling LLM agents to /earn through real-
world exploration and interaction.



Automating Astronomical Research with Large Language Model Agents:
A Case Study with Galaxy Spectral Energy Distribution Fitting
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Automating Astronomical Research
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Action spaceis vast and transcends mathematical formalism
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Action spaceis vast and transcends mathematical formalism
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Action spaceis vast and transcends mathematical formalism
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Action spaceis vast and transcends mathematical formalism
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Action spaceis vast and transcends mathematical formalism
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Introducing Mephisto*

*In the classic tale of Faust, Mephisto is a demon who
tempts the scholar Faust with knowledge and power in
exchange for his soul.



A collaboration of multiple Al agents (LLM models)
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A collaboration of multiple Al agents (LLM models)
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A co//aborat/on of multlple AI agents (LLM models)
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A case study: Fitting galaxy spectral energy distributions

JADES-GS-z14-0

CIGALE (come
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of galaxies by comparing modelled galaxy spectral energy distributions (SEDs) to observed ones from the « Experime 1 2 ’
X-rays and far ultraviolet to the far infra-red and radio. See the Download page to download CIGALE. The « Version 2018.0 . o it v
git repository is on our Gitlab. If you need any help to use CIGALE, you can contact directly Médéric = N .o i -
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FORTRAN by Burgarella et al. (2005) and Noll et al. (2009), which was developed within the framework of

the D-SIGALE project led by Guilaine LAGACHE and funded by the French Agence Nationale de la
berche (ANR). The current version of CIGALE is a completely new implementation that is presented in

CIGALE SED Fitting Codes
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Enabling Al to collect "knowledge”through exploration
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Enabling Al to collect "knowledge”through exploration
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Enabling Al to collect "knowledge”through exploration
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Enabling Al to collect "knowledge”through exploration
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Enabling Al to collect "knowledge”through exploration
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Enabling Al to collect "knowledge”through exploration

Knowledge base
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Enabling Al to collect "knowledge”through exploration
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Enabling Al to collect "knowledge”through exploration
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Enabling Al to collect "knowledge”through exploration
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Enabling Al to collect "knowledge”through exploration
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Example of learned "knowledge”



Example of learned "knowledge”

"If the fitis overestimated in the UV and optical bands,



Example of learned "knowledge”

"If the fitis overestimated in the UV and optical bands,

increasing the E_BV _lines parameter may lead to a
better fit by accounting for more dust attenuationin
these bands. "




Reinforcement learning with LLM outperforms native LLMs
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Reinforcement learning with LLM outperforms native LLMs
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Reinforcement learning with LLM outperforms native LLMs
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Reinforcement learning with LLM outperforms native LLMs

6t --------mmm e - -

=
£ 60

kS| Chi-Square

Q

§ £ 4 - Number of
g photometry
‘= band fitted
@)

51 within 1sigma

0 10 20 30
Number of Learning Iterations

Sun, YST+ submitted



Reinforcement learning with LLM outperforms native LLMs
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Reinforcement learning with LLM outperforms native LLMs
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While we are far from AGI, LLMs are
prolific enough to understand
basic causality through actions




Reason about all astronomical objects in the cosmos




Provided that we have a capable model/that can
generate inference quickly and cost efficiently....
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capable model VS. cost efficiency

In the SED case study, we need ~0.1M tokens per source
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capable model VS. cost efficiency
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capable model VS. cost efficiency
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1B sources = $1 billion

e.g., Roman Space Telescope, Euclid Space Telescope



1B sources = $1 billion

e.g., Roman Space Telescope, Euclid Space Telescope

~ approximately the build cost
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The curation of an astronomy benchmark dataset

"‘ : QENV":EV%g Publications A-Z Journal Information

Home / A-Z Publications

Annual Review of Astronomy and Astrophysics

m About Current Early Publication Previous Volumes Editorial Committee

AIMS AND SCOPE OF JOURNAL: The Annual Review of Astronomy and Astrophysics covers the
significant developments in the field of astronomy and astrophysics, including: the sun; solar
system and extrasolar planets; stars; the interstellar medium; galaxy and galaxies; active galactic

nuclei; cosmology; and instrumentation and techniques, and the history of the development of new
areas of research.

Published Since 1963
Journal Status Active
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Impact Factor 333

Current Volume is 0A )

Latest Articles

(i.e. as part of the Aurora-GPT effort with the Argonne National Laboratory)



But how do we know which model is better?

H




40 pages of all you
YUAN-SEN TING, ET AL. need to knOW abOUt

Submitted 1o ApJL LLM for astronomy

ABSTRACT

We present a comprehensive evaluation of proprietary and open-weights large language models (LLMs) using
the first astronomy-specific benchmarking dataset. This dataset comprises 4,425 multiple-choice questions cu-
rated from the Annual Review of Astronomy and Astrophysics, covering a broad range of astrophysical topics.
Our analysis examines model performance across various astronomical subfields and assesses response calibra-
tion, crucial for potential deployment in research environments. Claude-3.5-Sonnet outperforms competitors
by up to 4.6 percentage points, achieving 85.0% accuracy. We observed a universal trade-off in proprietary
models: a 10-fold cost increase yields a 3.5-point accuracy improvement. This suggests a 10-fold reduction in
cost every 3 months to a year, offering optimistic prospects for LLM deployment in astronomy research. Open-
source models have rapidly improved, with LLaMA-3-70b (80.6%) and Qwen-2-72b (77.7%) now competing
with some proprietary models. We identify significant performance variations across topics, with models gener-
ally struggling more in exoplanet-related fields, recent stellar astrophysics, and observational techniques. These
challenges likely stem from less abundant training data, limited historical context, and rapid recent develop-
ments in these areas. This pattern is observed across both open-weights and proprietary models, with regional
dependencies evident, highlighting the impact of training data diversity on model performance in specialized
scientific domains. Top-performing models demonstrate well-calibrated confidence, with correlations above
0.9 between confidence and correctness, though they tend to be slightly underconfident. The development for
fast, low-cost inference of open-weights models presents new opportunities for affordable deployment in as-
tronomy. The rapid progress observed suggests that LLM-driven research in astronomy may become feasible
in the near future, potentially revolutionizing how we approach large-scale data analysis in the field.

WHO WINS THE ASTRONOMY JEOPARDY'!
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Open-weights large language models?
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LLaMA-3 70b throughput on four A100 GPUs
= ~ 100 tokens / second

1 SED source = 15 GPU minutes
1B sources = 10M GPU days

A cluster with 7000 A100 GPUs
running for 30 years




Can the light-weight ~7B open-source models
perform equally with some "fine-tuning” ?
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Continual pre-training on all the 330K astronomy papers
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For weaker models, there might
be some marginal gain.
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Current LLMs remain brittle, and efforts to
improve them through continual pretraining
have yetto yield significant gains.



So what should we do ?



Warren Buffet:

"The trick is, when there is nothing to do, do nothing."



Warren Buffet:

"The trick is, when there is nothing to do, do nothing."

"The stock market is designed to transfer money from
the Active to the Patient."



Huang's Law

GPU-Computing perf -
1.5X per year
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Tech Trends

Tech unicorn Zhipu Al joins China’s LLM price war
amid new funding round

« Zhipu Al's GLM series of large Qstq490 per cent less fhan the
current industry average of{1 yuan per T million tokens

0.1 Yuan
per 1 million tokens

3 Ben Jiang
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Summary :

Despite the surge in interest, the knowledge graph reveals a
striking lack of innovation at the intersection of Al and astronomy.

Current research prioritizes tool development over creating meta-
® methods that could accelerate the discovery of 'unknown unknowns.

By interacting with real-world data, LLM agents can distill causal
relationships, conducting end-to-end research autonomously.

The astronomical cost of applying at scale limits our progress, but
the growth in GPU computing power will inevitably overcome this.



