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1. Introduction to Radio 
Astronomy



"Star Noise: Discovering the Radio Universe" by 
Kenneth I. Kellermann and Paul A. Bouton

Brief History of Radio Astronomy

● Early discoveries (Karl Jansky's work)
● Landmark discoveries (e.g., pulsars, cosmic 

microwave background)

discovery of cosmic microwave background 
radiation, evidence for the Big Bang theory (Arno 

Penzias, Robert Wilson 1978)

aperture synthesis technique, discovery of pulsars (Sir 
Martin Ryle and Antony Hewish 1974)



https://ecuip.lib.uchicago.edu/multiwavelength-astronomy

Radio astronomy: phenomena not visible in other wavelengths



Atacama Large 
Millimeter/submillimeter Array (ALMA) 
→ 

Very Large Array 
(JVLA)

World-class radio astronomy telescopes
Five-hundred-meter Aperture 
Spherical Telescope (FAST)

Square Kilometre Array (SKA)



2. Challenges in modern radio astronomy

Data challenges - massive data volumes

Need for automated processing and analysis



One of the biggest challenges is managing SKA Big Data → 
cutting-edge technologies incl Machine Learning

© Square Kilometer Array Observatory 2024



AI revolutionises radio astronomy - automation
● Manual processing limitations:

○ Volume of data, PB daily; Human error; Time-consuming, delay discovery; Scalability issues
● Benefit of automation: 

○ efficiency , consistency, scalability, resource allocation, enhanced discovery
○ allow astronomers to focus on deeper thinking and interpretation.

Generated by AI



Applications of Machine Learning and Deep Learning

structured data tasks like regression, classification, 
clustering, and recommendation systems

unstructured data, such as computer vision, 
natural language processing, Autonomous 
vehicles, and generative models

ML: learn from data, identify patterns, make decisions with minimal human intervention, DT, SVM
DL: use neural networks with many (deep) layers to analyze complex patterns in large datasets, CNN, RNN



Deep Learning for Computer Vision 
Deep learning models achieved impressive results in image/videos understanding and generation

Classification    Object Detection    Instance segmentation        Keypoint detection          Image 
super-resolution 

Video Action Recognition     Object Tracking       Image Generation       Conversation                   Video 
Generation   

GPT-4
Midjourney SORA



3. AI Applications in Radio Astronomy



AI Applications in Radio Astronomy

● Telescope optimization: 
○ telescope settings and scheduling to maximize scientific output.

● Data Processing: 
○ Handling massive data volumes: distributed computing, cloud storage, parallel processing.
○ real-time processing: Stream processing frameworks, real-time analytics platforms.
○ interference mitigation:  Supervised learning for RFI classification, unsupervised learning for 

anomaly detection and noise reduction.
● Image Reconstruction: 

○ CNNs for feature extraction and enhancement; GANs for super-resolution and de-noising.
● Source Finding: Identifying and classifying radio sources.

○ Catalogue -> sky models -> further calibrations
● Transient Detection: 

○ Real-time detection of fast radio bursts (FRBs) and pulsar glitches, efficient follow-up
○ AI-assisted discoveries of new FRBs, unknown, SETI

● Radio interferometry: 
○ AI-driven algorithms enhance radio interferometry techniques, leading to more accurate 

synthesized images from multiple telescopes.



Radio source finding and classification

● In SKA era, even the simplest and fundamental 
source finding task becomes challenging!

● Exponential growth in radio sources over past 
decade → Catalog creation difficult

● Big data analysis: major challenge for astronomers
● The integrity, reliability and accuracy of the created 

catalogue is the primary concern of any standard 
source search software.

● AI: promising solution for data processing 
challenges

1990-2000 NVSS: 1.8M
2020  EMU: 70 M

Norris+2021



Source Finding Tools: from basic algorithms to AI-driven solutions

● Early source search algorithms were integrated in data 
processing packages. E.g. SAD in AIPS -> FIRST, NVSS

● Independent source finding software

○ SExtractor, DUCHAMP,, Aegean, and PyBDSF

○ greater reliability and accuracy than older ones and 
are widely used in modern radio observations.

AI-based : 
CLARAN → HeTu v1 → HeTu v3

● Limitations of Traditional Component (Gaussian) 
Fitting Methods:

○ Time-Consuming, especially for large datasets; 
Systematic Errors: Prone to biases from initial 
model assumption; 

○ only Gaussian fitting, effective for point sources 
only, but not good for extended sources; 

○ only identify, lack ability to classify 

○ Challenges in detecting extended sources, faint 
features, contamination signals / interference 

● New-generation source finding tools are 

Traditional source finding tools



● Objective: Automate the classification of radio source 
morphologies

● Developer: Chen Wu, Ivy Wong et al. at ICRAR 

● Architecture: 

○ Pre-trained ResNet, Region Proposal Network (RPN), 
Faster Region-based (Faster R-CNN) 

○ Components: Uses a pair of WCS-aligned images for 
cross-matching.

● Training Data: VLA FIRST (radio) and WISE (IR)

○ Annotations: Data from the Radio Galaxy Zoo project 
https://radio.galaxyzoo.org/ DR1

● Locates and associates discrete and extended 
components of radio sources based on comp and 
peaks.

● Speed: <200 ms per image; Accuracy: >=90%

● Usage: Applied to the GMRT 610 MHz survey in the 
ELAIS-N1 region. Potential for large datasets

CLARAN
Classifying Radio Sources Automatically with Neural Networks

CLARAN is the first DL tool for 
automated radio source 
classification. Open source. 
Wu et al. 2019 MNRAS, 482, 1211

https://radio.galaxyzoo.org/


Limitations of CLARAN

● Multi-source fields: relatively lower success rates in fields containing multiple radio sources. 
● Limited field size: currently designed for smaller image fields, challenges in larger fields
● Classification: N components M peaks, not capture the full complexity of radio morphologies.
● Computational requirements: While faster than manual classification, CLARAN still requires 

significant computational resources, especially for processing large surveys.
● Performance sensitive to image quality: noise levels and resolution.
● Lack of explainability: As with many deep learning models, CLARAN's decision-making process is 

not always transparent, which can be a limitation for scientific applications requiring interpretability.
● Dependency on training data: It may struggle with rare or unusual morphologies not well 

represented in the training data. And limited to specific surveys: CLARAN was primarily trained on 
FIRST and WISE survey data, which may limit its generalizability to other radio surveys with different 
characteristics.

● Ongoing development: As a proof-of-concept, CLARAN is still evolving, and some limitations are 
expected to be addressed in future versions.



HeTu-v1: Radio source finding and classification 
China SKA Regional Centre



HeTu-v1

● Characteristics compared with CLARAN: 
○ More efficient backbone network : faster; high 

accuracy; ability to detect and classify 
multiple objects in same image;

○ good scalability: with GPU acceleration to 
meet processing needs of different scales

● Classification type: 
○ four astrophysical meaningful classes: 

Compact Source, FRI, FRII and Core-Jet

● Network: a combined 
ResNet+FPN network

● ResNet-101: balancing high 
recognition precision and 
computational cost

● Feature Pyramid Networks 
(FPN) - advantage in 
multi-feature object detection

1. Image pre-processing: image resizing and data normalization.
2. Feature extraction: use ResNet-FPN network to generate 

multi-scale feature maps from the processed images.
3. Proposal generation: use a multi-level RPN proposal network to 

generate proposal scores and proposal bounding boxes
4. Classification and box regression: use Faster R-CNN network to 

create multi-scale features maps, proposal results, processed 
images and ground truth boxes

5. Output: Label names, scores and boxes of detected sources 



HeTu-v1: training

● Training data: VLA FIRST radio images
● Each PNG image → log-min-max color scale
● All images were labeled by visual recognition according 

to our four classification scheme
● HeTu vs. ResNet:

○ HeTu combined ResNet + FPN enhances 
multi-feature object detection

○ HeTu: Faster and higher accuracy
● HeTu vs CLARAN

○ More efficient backbone network (ResNet vs Fast 
R-CNN), higher precision and faster processing

Training: higher precision ~87%

Address class imbalance

FRI: 15x; CJ: 20x FRII: 3x; CS: 2.3x



Examples of outputs



HeTu-v1: Prediction on MWA GLEAM images

● HeTu runs 100ms per image, 21 times faster than Aegean (traditional source finder); 
○ Cross-match rate 100% for FRII, 97.4% for FRI and 97.6% for CJ

● HeTu automates classification, new findings:
○ ~2300 extended sources from a part of GLEAM survey image
○ HeTu found more weaker sources (5>SNR>4), less artefacts (sidelobes, edge sources)



● HeTu - what we learn
○ 99% of time on building datasets, 1% of the time is spent optimizing AI algorithms for training
○ Detection speed in milliseconds, scalable for larger datasets

● Future work : 
○ Dataset argumentation: Add more CJ and FRI sources to train model; Label larger size of images for 

higher precision on larger images to accelerate; Include more morphological types; data 
augmentation methods

○ Network: advanced backbone network, advanced object detection algorithmic framework
○ Training techniques: Transfer learning, pre-trained model, self-supervised learning, small amount of 

label data

● Goal of Application
○ Apply to large-volume image sets, e.g., FIRST (>900000), RACS (4M), EMU (>20M) 

what we learn from HeTu-v1 and future work directions



HeTu-v1 →HeTu-v3
a revolutionary change in the working mode

● HeTu-v1 and other traditional approaches:
○ Manual label -> Training (small data) -> Validation -> Prediction (larger data)
○ Limitations: labor-intensive labeling (99% of time on labeling datasets, 1% on optimizing AI 

algorithms), limited dataset for training, sensitive to training data, fixed model and only for 
specific application

○
● HeTU-v3 revolutionary changes:

○ Pretrain foundation model on Large Data →  small labeled data for fine-tune and 
transfer to downstream applications

○ Building foundational models is a new cutting-edge way of working that has emerged 
only in recent years with the development of big models and big data.

○ Self-supervised pretraining, advanced architectures (VitDet, InternImage), efficient unlabeled 
data use, improved transfer learning, automated workflow, enhanced scalability and 
adaptability for large-scale radio astronomy image analysis.

○ Cutting-edge scalable solution for large-scale surveys



● More advanced architecture: 
○ VitDet and InternImage models, advantages over ResNet in HeTu v1 

● Larger datasets:  
○ ASKAP RACS-Mid survey, 50 times more objects, Potentially better performance on extended 

and complex sources
● Classification: 

○ four classes (CS/CJ/FRI/FRII) with guessed label
● New Training methods: two-step approach:

○ Pretraining a foundation model (unsupervised learning with big data) 
○ Transfer learning to downstream applications with little training data

● Performance Metrics: 
○ mAP, processing speed per image, accurate rates for different types

● Applications:  ASKAP RACS, EMU, 
● Outcome and future directions 

○ Multi-source data, larger-scale datasets

HeTu-v3: overview and compare with HeTu-v1



Workflow of HeTu v3

1. Three stages: data preparation, experimentation, interpretation. 
2. Large multi-band datasets, advanced AI architectures
3. HeTu-v3 is not just a technical improvement, but a reimagining of how we approach 

the complex downstream astronomical tasks.



Foundation models: paradigm change in computer vision
The Foundation Model has been widely adopted and used since around 2020 with the release of OpenAI's GPT-3
Step 1 Pretrain foundation model. Unsupervised or supervised learning with big training data
Step 2 Transfer to downstream applications. Incorporate downstream module and use little training data, flexibly applied to a 
wide range of tasks such as classification, target detection, and image synthesis. 

An overview of of InternImage’s training and applications

Popular foundation vision models

CLIP OpenAI 2021

Florence Microsoft 2021

DINO Meta 2021

InternImage Shanghai AI Lab 2022

EVA BAAI 2022

Flamingo Deepmind 2022

ImageBind Meta 2023

LVM UCB 2023



HeTu v3: Pretraining Step

Pretraining data

(Unlabeled radio images)

Pretraining method
(self-supervised 

learning)

various 
modalities

Foundation models

Vision Transformer

ResNet

InternImage

various 
resolutions

various 
scenarios

Constrastive learning: MoCo v3
(for CNN models) 

Masked AutoEncoder
(for transformer models) 

● Radio data: diverse freq
● Optical data: diverse band
● Infrared data
● X-ray data
● etc…



Foundation Model: ResNet, VitDet, InternImage

Foundation model

Vision Transformer

ResNet

InternImage

Advantages of InternImage and Vision Transformer

• Larger receptive field (Vision Transformer) and 

learnable convolution kernels ’ shapes (InternImage) 
Capture more information (e.g., especially for sources 

with   strange shapes)

• Scaling law

Much better performance on big data or big model.



Experimental Results on Model Architecture

Model 
(pretrained by ImageNet) Flops

Detection Instance Segmentation

mAP AP@50 mAP AP@50

ResNet-50 0.113T 0.452 0.747 0.380 0.717

Vision Transformer-B 0.286T 0.490 0.800 0.404 0.773

InternImage-T 0.105T 0.503 0.840 0.429 0.833

Vision Transformer

ResNet

InternImage



Data used in HeTu v3: ASKAP RACS-mid survey

● Survey :  the entire southern sky up to a declination of +49 degrees at a frequency of 1367.5 MHz, with a 
declination-dependent resolution of 8.1-47.5 arcsec, and a median sensitivity of 0.2 mJy/PSF. 

● Intermediate resolution between FIRST and NVSS: getting more detail without losing the full structure
● The release consists of 1493 unique tiles (and 88 duplicate observations), more than 800GB (raw data)
● ~ 3000 images per observation data
● 4 million objects (50 x more than HeTu v1) → to train foundation model

 Improvement in sensitivity and resolution available with RACS-mid compared with NVSS and FIRST.
https://research.csiro.au/racs/ & S. W. Duchesne et al. 2023

https://research.csiro.au/racs/


Experiments on Pretraining 

Model Pretraining Data Pretraining Method
Detection Instance Segmentation

mAP AP@50 mAP AP@50

ResNet-50 ImageNet Supervised learning 0.452 0.747 0.380 0.717

ResNet-50 4.5M radio images Self-supervised learning 0.502 0.843 0.434 0.836

Pretraining using 4.5M unlabeled radio images on VitDet and InternImage are ongoing, should be even 

better 



HeTu-v3: Transferring downstream tasks

Transfer

Foundation models

Vision Transformer

ResNet

InternImage

Downstream Tasks
E.g. galaxy morphological 

classification
Select 2000 images for training

● Manual labeling 
● Imbalance: augmentation on CJ, FRI, 

FRII classes; Seesaw Loss function to 
tackle class imbalance

● Uncertain classifications: reduce their 
weights during training to reduce 
contamination and misrepresentation

CJ CS FRI FRII Total Object # Image

Training 278 1349 49 335 2011 1601

Validation 68 347 14 91 520 401



Seesaw Loss : A loss function to tackle class imbalance 
problem

HeTu-v3: Transfering Details

Incorporate MaskRCNN module to enable foundation model to 

do instance segmentation 



Output example using HeTu - v3

FRI
CS

FRII

CS CS CS

CJ
FRII

FRII



Summary of HeTu-v3

HeTu v3
ResNet, VitDet & 
InternImage + FPN
Mask R-CNN
(China SRC + Shanghai AI Lab)

HeTu v2
ResNet + FPN
Mask R-CNN

HeTu v1
ResNet + FPN 
Faster R-CNN
(China SRC)

CLARAN
ResNet 
Faster R-CNN
 (ICRAR)

HeTu-v3 represents a paradigm change in astronomical image analysis, 
revolutionizing the traditional workflow with an innovative approach to building 
large-scale foundation models. It uses massive unlabeled data to train a generic 
foundation model, and then employs efficient transfer learning to tackle specific 
tasks. This approach not only achieves superior generality and generalization 
capabilities, but also greatly reduces the dependence on limited labeled data. 
Using advanced visual models such as VitDet and InternImage, HeTu-v3 is able to 
handle complex radio source morphology and shows even better scalability and 
performance improvement potential as data volumes increase.



HeTu-v3: not only a source finder

● Astronomaly: Active Learning for Anomaly Detection 
● Discovery of New Anomalous Objects: Successfully used to 

discover new Odd Radio Circles (ORCs) (Lochner et al. 2023)
● HeTu v3's pretrained foundation model could be fine-tuned for 

anomaly detection and other downstream tasks
● Feature Extraction: advanced vision models (VitDet, InternImage) 

could provide rich feature representations for anomaly detection
● Efficiency: HeTu-v3's ability to handle large datasets efficiently 

could complement active learning approach
● Complementary Strengths: HeTu v3's strong performance in 

source detection and classification could be combined with 
active learning approach for more effective anomaly detection

● Potential Workflow: 
○ Use HeTu-v3 for initial source detection and feature extraction
○ Apply active learning framework to identify potential 

anomalies
○ Leverage human expertise for final verification and discovery

 (Lochner & Bassett 2020)



Other source finding and classification tools



Classifying Radio Galaxies with CNN 

● Objective: Apply deep machine learning to classify radio images 
of extended sources based on morphology using CNN

● Focus: Fanaroff-Riley (FR) class radio galaxies and bent-tailed 
morphology radio galaxies.

● Data Source: VLA-FIRST
● Training Data: ~200 sources per class, augmented with rotated.
● Methodology: Used a "fusion classifier" combining results of 

binary classifications.
● Performance:

○ Bent-tailed galaxies: 95% precision, 79% recall
○ FRI class: 91% precision, 91% recall
○ FRII class: 75% precision, 91% recall

● Processing Speed: <0.17 s per image classification.
● Advantages:

○ Comparable accuracy to manual classification
○ Significantly faster processing
○ Eliminates need for handcrafted feature extraction

● Implications: Demonstrates the potential of deep learning for 
handling large datasets

Aniyan, A. K.; Thorat, K. 2017 ApJS



● Objective: SKA Big Data makes automatic object detection and instance 
segmentation crucial for source finding and analysis. Evaluate and 
compare the performance of multiple DL models for object detection and 
semantic segmentation in radio images. 

● Methodology:
○ Applied various DL methods to radio astronomical images
○ Two types of tasks: object detection and semantic segmentation.

● Data: Used images obtained from ATCA, ASKAP, VLA, RGZ
● Metrics: Evaluated models based on prediction performance (precision, 

recall, F1 score) and computational efficiency.
● Significance: aims to guide astronomers in selecting appropriate deep 

learning methods for analyzing large-scale radio astronomy datasets, 
particularly in preparation for the SKA era

● Conclusion: 
○ YOLO-Based Methods: Best for object detection, particularly effective 

for images with low signal-to-noise ratios.
○ Tiramisu Model: Best for semantic segmentation, balancing 

performance and computational efficiency.
○ Transformer-Based Models: Limited by high computational needs and 

data requirements.

Renato Sortino et al. 2023, ExpAs

https://link.springer.com/article/10.1007/s10686-023-09893-w#auth-Renato-Sortino-Aff1-Aff2


YOLO-CIANNA: Galaxy detection with deep learning in radio data applied 
to the SKAO SDC1

● Objective: Develop a new source detection and characterization 
method for massive radio astronomical datasets using deep 
learning techniques.

● Method: YOLO-CIANNA, a customized deep-learning object 
detector specifically for astronomical datasets.

● Key Features:Adapted from YOLO (You Only Look Once) object 
detection framework

● Dataset: Tested on simulated 2D continuum images from the 
SKAO SDC1 (SKA Science Data Challenge 1) dataset.

● Performance: Outperforms previous published results on the 
SDC1 dataset

● Efficiency: Capable of real-time detection
● Innovations: Addresses specific challenges of 

radio-astronomical images (high dynamic range, crowded fields, 
small objects)

● Availability: Open-source and included in the CIANNA framework
● Implications:Promising for handling the massive data volumes 

expected from the upcoming SKA

● source finding (RA, Dec) to locate the 
centroids and/or core positions,

● source property characterization 
(integrated flux density, possible core 
fraction, major and minor axis size, major 
axis position angle)

● source population identification (one of 
SFG, AGN-steep, AGN-flat)



YOLO-CHADHOC in SDC2 by MINERVA team

● Dual Pipelines: 
○ YOLO-CIANNA and CHADHOC, Final catalog merges results from both 

pipelines for improved completeness and purity
● YOLO-CIANNA: 

○ Customized version of YOLO network developed in SDC1
○ Implemented in CIANNA framework (GPU-accelerated)
○ Works on 64x64x256 (RA, Dec, Freq) pixel sub-volumes
○ 21 3D-convolutional layers
○ Predicts source parameters: Flux, HIsize, w20, PA, and I
○ Processes 70 input cubes per second on a V100 GPU

● CHADHOC (Convolutional Hybrid Ad-Hoc pipeline):
○ Three-step: detection, selection, parameter estimation
○ Detection: Traditional algorithm with smoothing and S/N thresholding
○ Selection: CNN to identify true sources among detections
○ Parameter estimation: Separate CNNs for each source parameter

● Merging Catalogs: Combines strengths of both pipelines
○ CHADHOC better at typical sources, YOLO better at low-brightness 

sources
○ Careful merging improves overall catalog quality

2683 Hi sources. 1286 × 1286 × 6668 pixels to 
represent a 1degree^2 field of view across the 
full Challenge frequency range 0.95–1.15 GHz 
(redshift 0.235–0.495) Credits: SKAO

● Achieved highest score in SDC2
● Effective in handling large data volumes 

expected from SKA
● Demonstrated robustness in dealing with 

varying noise levels and source morphologies



EMU's ML-Enabled Pipeline

● Uses Gal-DINO computer vision networks
● Predicts:

○ Radio morphology categories
○ Bounding boxes for radio sources
○ Potential infrared host positions

● Training:
○ ~5,000 visually inspected radio galaxies
○ Includes compact and extended morphologies

● Performance:
○ 99% of predicted bounding boxes have Intersection over Union 

(IoU) > 0.5
○ 98% of predicted host positions within 3" of ground truth

● Application:
○ Applied to EMU Pilot Survey (EMU-PS)
○ Processed 220,102 Selavy components
○ Identified 211,625 radio sources

● Advantages:
○ Efficient processing of large datasets
○ Handles complex morphologies
○ Enables automated catalogue construction

RG-CAT: Detection Pipeline and Catalogue of Radio Galaxies in the 
EMU Pilot Survey (Gupta et al. 2024)
● Trained on approximately 5,000 visually inspected radio 

galaxies and their infrared hosts.
● Designed specifically for radio galaxy detection and 

classification.
● Focuses on radio and infrared image pairs.



SimCLR - self-supervised learning for radio data analysis
● Objective: Explore contrastive learning methods to learn suitable 

radio data representations from unlabeled images for various 
downstream tasks.

● Data Source:   Unlabeled images from ASKAP EMU and SARAO 
MeerKAT GPS surveys；Smaller labeled datasets from different 
radio surveys for evaluation

● Methodology: Used self-supervised learning to build foundational 
models；Explored two image extraction modes

● Evaluation Tasks:
○ Radio source morphology classification
○ Radio source instance segmentation
○ Search for objects with peculiar morphology

● Key Findings:
○ Demonstrated benefits of self-supervised foundation models 

for radio data analysis
○ Assessed performance on larger test datasets compared to 

previous studies
○ Explored advantages of models trained on "random" survey 

datasets vs. "source-centric" datasets

S. Riggi et al. (2024)

● Implications:
○ Provides ready-to-use foundational models for SKA 

precursor and other radio surveys
○ Models can be used as feature extractors for similar 

analyses or new tasks
● Future Directions:

○ Further exploration of advantages from different 
training dataset construction methods

○ Potential applications in upcoming large-scale radio 
surveys



Potential challenges and limitations

● Data Quality: Performance dependent on training data quality and completeness

● Extended Sources: Difficulty in accurately detecting and characterizing complex, extended 

structures

● Rare Morphologies: Limited ability to identify unusual or rare source types

● Scalability: Computational demands for processing extremely large datasets

● Interpretability: "Black box" nature of deep learning models can limit understanding of decisions

● Generalization: Models may not perform well on data from different instruments or surveys

● Class Imbalance: Underrepresentation of rare source types in training data

● Noise Handling: Varying performance in presence of different noise characteristics

● False Positives: Risk of misclassifying artifacts as real sources

● Adaptability: Need for retraining or fine-tuning for new data types or scientific goals



Other AI applications in Radio Astronomy



AI applications in SKAO Data Challenge 2: 3D souce finding

● Machine Learning Frameworks TensorFlow and PyTorch were commonly used for building and 
training models

● CNNs were used for image-based tasks, such as source detection and classification
● Random Forests: Employed for classification tasks and parameter estimation
● Ensemble Methods: Combining predictions from multiple independent techniques
● Transfer Learning: Some teams used pre-trained models and fine-tuned them for specific HI source 

detection tasks
● Data Augmentation techniques used to address class imbalance and improve model generalization
● Automated Pipelines: Development of efficient, automated source-finding pipelines to handle large 

data volumes
● Custom AI Models: Some teams developed specialized models tailored for HI source detection and 

characterization
● Either algorithmic (e.g. SoFiA) or ML/DL-based methods are not perfect, combining classical 

source finding methods with machine learning techniques for improved performance
● Unsupervised Learning: Some approaches used unsupervised methods for initial source detection 

or data preprocessing



HI source finding workflow: SOFIA + DL
Wang et al 2024 
submitted to PASA

HI source finding workflow: FLASHfinder → Working on a more efficient way to filter out good from bad candidates  
Overwhelming imbalance between false positives (due to systematic/processing artefacts) → visual inspection required !



AI in radio astronomy: application areas

● Telescope operation: Automated survey scheduler for 
ASKAP, Maximises efficiency (both $$ & time) 

● Diagnose system health of large telescope arrays such as 
LOFAR (NL; Mesarcik + 2020)

● Data validation: RFI removal from observations using (e.g 
Yang+2020; Sadr+2020; Mesarcik+2022; Pritchard+2024)

● Reduce noise artefacts in reconstructed images by filling 
the gaps in the Fourier plane → bypass typically bespoked 
imaging decisions (Schmidt + 2022)

● Synthesis imaging: closure invariants + ML (Thyagarajan, 
Hoefs & OIW 2024  submitted to RASTI)

SAURON Scheduling Autonomously Under Reactive 
Observational Needs

Credit: Jonghwan Rhee



AI in radio astronomy: application areas

● Fast Extragalactic Transient Candidate Hunter (FETCH) is a deep 
learning-based software designed to classify fast radio burst (FRB) 
candidates and distinguish them from radio frequency interference (RFI). 

● transfer learning techniques to train state-of-the-art deep neural networks for 
classifying FRB and RFI candidates.

● Data: simulated FRBs and real RFI candidates from Green Bank telescope

● 11 deep learning models, each achieving an accuracy and recall above 99.5% 
on the test datasets

            Sim FRB                      RFI                         Pulsar

Agarwal, D+2020; 
https://github.com/devanshkv/fetch

● Able to detect all FRBs with SNR>10 in data 
from other telescopes, e.g. ASKAP and Parkes

● While other approaches like those developed by 
Connor & van Leeuwen (2018) and Zhang et al. 
(2018) have shown success with specific 
telescopes, FETCH aims to provide a more 
generic solution that can be widely applied 
across different instruments



Key challenges for future AI in radio astronomy

● Developing explainable AI: As AI becomes more integral to discoveries, ensuring the interpretability 
and explainability of AI models will be crucial.

● Handling increasing data volumes: Next-generation telescopes will produce even more data, 
requiring continued advances in AI processing capabilities.

● Integrating AI across the full astronomy workflow: Expanding AI from specific tasks to more holistic 
integration across observation, analysis, and theory.

● Balancing automation and human expertise: Finding the right balance between AI-driven 
automation and human scientific insight and creativity.

● Ethical considerations: Addressing potential biases in AI systems and ensuring responsible use of 
AI in scientific research.

● Cross-disciplinary collaboration: Fostering collaboration between astronomers, computer 
scientists, and AI researchers to drive further innovations.



Development Platform: OpenMMLab
OpenMMLab (from Shanghai AI Lab)

One of the most popular open-source algorithm platforms for computer vision. 

We use OpenMMLab to train foundation models, transfer to downstream tasks, and deploy models.

https://github.com/open-mmlab 

https://github.com/open-mmlab


Astronomical Foundation Models

Optimization for model 
training and 
application

RAG

Knowledge editing

…

Fine-tuning

Training performance 
optimization

Astronomical observational data

Astronomy open scientific research

Astronomical foundation model series

Multiband/multimodal astronomical foundation model

Astronomical image 
foundation model

Radio astronomy 
foundation model

Astronomical LLMs and text intelligence

time-domain astronomy 
foundation model

Astronomical Unification/Integrated Foundation Model (Exploration)

…

Exploration of new 
model architectures

Astronom
ical 

research 
agents

Image

Spectrum

…

Image Embedding

Spectrum 
Embedding

Image Latent 
Space

Spectrum Latent 
Space

Multi-band contrastive 
learning Embedding

Cross Latent 
Space

Down 
stream 
tasks

Physical information 
fusion

Key challenges
The design of models tailored for astronomical 
observational data represents a cutting-edge 
exploration. However, the results can sometimes 
lack interpretability and may not always adhere 
to physical laws.

Solutions and innovations
Delve into the sophisticated capabilities of LLMs to intelligently interlink astronomical 
knowledge and data, all grounded in textual analysis.
Leveraging the state-of-the-art advancements in foundation models. Embedding is designed for 
astronomical data analysis
The design of single-band and multi-band embeddings integrates physical information.



Thank you for your attention

Contact: Tao An, antao@shao.ac.cn 

Thanks to my colleagues for helping to prepare this presentation 
Shaoguang Guo, Ivy Wong, Kaipeng Zhang, Huaxi Chen
Teams from China SKA Regional Centre, Shanghai AI Lab, Zhejiang (AI) Lab

● HeTu-v3 combines advanced AI networks, self-supervised learning, and foundation 
models, representing a major leap forward in the way of astronomical image analysis

● The foundation models will continue to fuse data from multiple sources, empowering 
astronomers to accelerate research, discover rare phenomena. 

● By enabling efficient processing of massive datasets, HeTu-v3 enables automated 
analysis in future SKA-scale surveys, pushing the frontiers of cosmic exploration
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