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1. Introduction to Radio
Astronomy



Brief History of Radio Astronomy

aperture synthesis technique, discovery of pulsars (Sir
Martin Ryle and Antony Hewish 1974)

e Early discoveries (Karl Jansky's work)
e Landmark discoveries (e.g., pulsars, cosmic
microwave background)

"Star Noise: Discovering the Radio Universe" by discovery of cosmic microwave background

Kenneth |. Kellermann and Paul A. Bouton radiation, evidence for the Big Bang theory (Arno
Penzias, Robert Wilson 1978)



Radio astronomy: phenomena not visible in other wavelengths

Microwave Infrared Gamma Ray
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World-class radio astronomy telescopes

Very Large Array
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2. Challenges in modern radio astronomy

Data challenges - massive data volumes

Need for automated processing and analysis



One of the biggest challenges is managing SKA Big Data —
cutting-edge technologies incl Machine Learning
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Al revolutionises radio astronomy - automation

e Manual processing limitations:

o Volume of data, PB daily; Human error; Time-consuming, delay discovery; Scalability issues
o Benefit of automation:

o efficiency, consistency, scalability, resource allocation, enhanced discovery

o allow astronomers to focus on deeper thinking and interpretation.

Generated by Al



Applications of Machine Learning and Deep Learning

ML: learn from data, identify patterns, make decisions with minimal human intervention, DT, SVM
DL: use neural networks with many (deep) layers to analyze complex patterns in large datasets, CNN, RNN

Real World Applications Of Machine Learning
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Deep Learning for Computer Vision

Deep learning models achieved impressive results in image/videos understanding and generation

Classification Oblect Detect|on Instance segmentation Keypoint detection

CAT CAT, DOG, DUCK

Video Action Recognition Object Tracking Image Generation Conversation Video

Midjourney




3. Al Applications in Radio Astronomy



Al Applications in Radio Astronomy

Telescope optimization:
o telescope settings and scheduling to maximize scientific output.

Data Processing:
o Handling massive data volumes: distributed computing, cloud storage, parallel processing.
o real-time processing: Stream processing frameworks, real-time analytics platforms.

o interference mitigation: Supervised learning for RFI classification, unsupervised learning for
anomaly detection and noise reduction.

Image Reconstruction:
o CNNs for feature extraction and enhancement; GANs for super-resolution and de-noising.
Source Finding: Identifying and classifying radio sources.
o Catalogue -> sky models -> further calibrations
Transient Detection:
o Real-time detection of fast radio bursts (FRBs) and pulsar glitches, efficient follow-up
o Al-assisted discoveries of new FRBs, unknown, SETI
Radio interferometry:

o Al-driven al(?orithms enhance radio interferometry techniques, leading to more accurate
synthesized images from multiple telescopes.



Radio source finding and classification

In SKA era, even the simplest and fundamental
source finding task becomes challenging!
Exponential growth in radio sources over past
decade — Catalog creation difficult

Big data analysis: major challenge for astronomers
The integrity, reliability and accuracy of the created
catalogue is the primary concern of any standard
source search software.

Al: promising solution for data processing
challenges

. M& of the Universe

Mills, ©BSS
o
iCm

o ©

Reber 6 gojton
°

H:
,aReber ° €Y

EMU
* LOFAR

& Apertif
¥ VLASS

% TGSS
A GLEAM
#* MIGHTEE
MSSS

5
® :
° - 7

" [ | - .!.°l%'

1990-2000 NVSS: 1.8M
2020 EMU: 70 M

Norris+2021




Source Finding Tools: from basic algorithms to Al-driven solutions

e Early source search algorithms were integrated in data
processing packages. E.g. SAD in AIPS -> FIRST, NVSS

e Independent source finding software
o SExtractor, DUCHAMP, Aegean, and PyBDSF

o greater reliability and accuracy than older ones and
are widely used in modern radio observations.

Traditional source finding tools

Software compact | extended | completen | reliability | flux density parallel mode
source source ess estimate

SExtractor Y N high high poor multithreading

DUCHAMP Y N poor poor poor multithreading

Selavy Y N high poor high multiprocessing

BLOBCAT Y N high high high multiprocessing

Aegean Y N high high high multithreading

PyBDSF Y Y high high high multithreading

ProFound Y Y high multithreading
(extended)

CAESAR Y Y high multiprocessing
(extended)

e Limitations of Traditional Component (Gaussian)
Fitting Methods:

o Time-Consuming, especially for large datasets;
Systematic Errors: Prone to biases from initial
model assumption;

o only Gaussian fitting, effective for point sources
only, but not good for extended sources;

o only identify, lack ability to classify

o Challenges in detecting extended sources, faint
features, contamination signals / interference

e New-generation source finding tools are

Al-based :
CLARAN — HeTu v1 — HeTu v3



CLARAN
Classifying Radio Sources Automatically with Neural Networks

Objective: Automate the classification of radio source
morphologies

Developer: Chen Wu, vy Wong et al. at ICRAR
Architecture:

o Pre-trained ResNet, Region Proposal Network (RPN),
Faster Region-based (Faster R-CNN)

o Components: Uses a pair of WCS-aligned images for
cross-matching.

Training Data: VLA FIRST (radio) and WISE (IR)

o Annotations: Data from the Radio Galaxy Zoo project
https://radio.galaxyzoo.org/ DR1

Locates and associates discrete and extended
components of radio sources based on comp and
peaks.

Speed: <200 ms per image; Accuracy: >=90%

Usage: Applied to the GMRT 610 MHz survey in the
ELAIS-N1 region. Potential for large datasets
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CLARAN is the first DL tool for
automated radio source
classification. Open source.

Wu et al. 2019 MNRAS, 482, 1211
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https://radio.galaxyzoo.org/

Limitations of CLARAN

Multi-source fields: relatively lower success rates in fields containing multiple radio sources.
Limited field size: currently designed for smaller image fields, challenges in larger fields
Classification: N components M peaks, not capture the full complexity of radio morphologies.

Computational requirements: While faster than manual classification, CLARAN still requires
significant computational resources, especially for processing large surveys.

Performance sensitive to image quality: noise levels and resolution.

Lack of explainability: As with many deep learning models, CLARAN's decision-making process is
not always transparent, which can be a limitation for scientific applications requiring interpretability.

Dependency on training data: It may struggle with rare or unusual morphologies not well
represented in the training data. And limited to specific surveys: CLARAN was primarily trained on
FIRST and WISE survey data, which may limit its generalizability to other radio surveys with different
characteristics.

Ongoing development: As a proof-of-concept, CLARAN is still evolving, and some limitations are
expected to be addressed in future versions.



HeTu-v1: Radio source finding and classmcaflon
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HeTu-v1

e Characteristics compared with CLARAN:

o More efficient backbone network : faster; high
accuracy; ability to detect and classify

multiple objects in same image; 3.

o good scalability: with GPU acceleration to

meet processing needs of different scales 4.

e Classification type:

o four astrophysical meaningful classes:
Compact Source, FRI, FRII and Core-Jet

e Network: a combined
ResNet+FPN network

® ResNet-101: balancing high
recognition precision and

N —

Image pre-processing: image resizing and data normalization.

. Feature extraction: use ResNet-FPN network to generate

multi-scale feature maps from the processed images.

Proposal generation: use a multi-level RPN proposal network to
generate proposal scores and proposal bounding boxes
Classification and box regression: use Faster R-CNN network to
create multi-scale features maps, proposal results, processed
images and ground truth boxes

Output: Label names, scores and boxes of detected sources

oS-

computational cost

® Feature Pyramid Networks FEN®ResiNet

(FPN) - advantage in
multi-feature object detection
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HeTu-v1: training

Training data: VLA FIRST radio images
Each PNG image — log-min-max color scale
All images were labeled by visual recognition according
to our four classification st

e HeTu vs. ResNet:

o HeTu combined ResNet + FPN enhances
multi-feature object detection

o HeTu: Faster and higher accuracy

HeTu vs CLARAN

o More efficient backbone network (ResNet vs Fast
R-CNN), higher precision and faster processing

Class Training (# sources)| augmented (# sources)
Name

CS 1,720 3,949

FRI 157 2,512

FRII 825 2,475

CJ 132 2,628

Total 2,834 11,564

FRI: 15x; CJ: 20x FRII: 3x; CS: 2.3x

Training: higher precision ~87%

Table D.3: AP and mAP results of evaluation on D1 datasets

Class name | ResNet-50 ResNet-101 HeTu-50 HeTu-101 | CLaRAN vO0.1 [5]

1C_1P 0.8904 0.9180 0.9519 0.9621 0.8580

i¢cop 0.6583  0.6782 07597 07636 | 0.6882

1C3P 0.8920 0.9004 0.9126 0.9186 0.8816

2E2P 0.7836 0.8358 0.8398 0.8674 0.7014

Je 3P 0.8013 0.7809 0.8037  0.8057 | 0.7099

3C3P 0.9269 0.9230 0.9322 0.9413 0.8636

mAP 82.5% 83.9% 86.7% 87.6% 78.4%

Address class imbalance
Table D.7: AP and mAP results of the re-labelled dataset
Class name HgeTu-50 HgTu-101 HeTu-50 HeTu-101
(augmented) (augmented)

CS 0.9849 0.9860 0.9950 0.9940
FRI 0.8167 0.8507 0.8824 0.8962
FRII 0.9810 0.9643 0.9889 0.9806
Core-jet 0.7625 0.7951 0.8934 0.8961
mAP 88.6% 89.9% 94.0% 94.2%




Examples of outputs




HeTu-v1: Prediction on MWA GLEAM images

Threshold Methods CS FRI FRII CcJ Runtime
o= 0o HeTu 69,263 (94.5%) 751 (94.9%) 685 (100%) 801 (98.9%) 23.87 mins
AEGEAN 69.405 (94.3%) 1,298 components” 1,415 components 1,207 components  499.35 mins
S ‘h 713 C =
‘ oi=50 HeTu 76,328 (96.9%) 767 (97.4%) 685 (100%) 872 (97.6%) :
AEGEAN 82.894 (89.2%) 1,347 components 1,415 components 1,293 components  501.50 mins
Cross match 73,967 747 685 851 -
=40 HETU  SL.833(062%) T (OT0%) 685 (100%) — 90T(95.5%)
AEGEAN 96,340 (81.7%) 1,367 components 1,415 components 1,395 components  504.52 mins
Cross match 78,694 754 685 918 -

e HeTuruns 100ms per image, 21 times faster than Aegean (traditional source finder);
o Cross-match rate 100% for FRII, 97.4% for FRI and 97.6% for CJ
e HeTu automates classification, new findings:
o ~2300 extended sources from a part of GLEAM survey image
o HeTu found more weaker sources (5>SNR>4), less artefacts (sidelobes, edge sources)



what we learn from HeTu-v1 and future work directions

e HeTu - what we learn
o 99% of time on building datasets, 1% of the time is spent optimizing Al algorithms for training
o Detection speed in milliseconds, scalable for larger datasets

e Future work :

o Dataset argumentation: Add more CJ and FRI sources to train model; Label larger size of images for
higher precision on larger images to accelerate; Include more morphological types; data
augmentation methods

o Network: advanced backbone network, advanced object detection algorithmic framework

o Training techniques: Transfer learning, pre-trained model, self-supervised learning, small amount of
label data

e Goal of Application
o Apply to large-volume image sets, e.g., FIRST (>900000), RACS (4M), EMU (>20M)



HeTu-vl —»HeTu-v3
a revolutionary change in the working mode

e HeTu-v1 and other traditional approaches:

O

O

O

Manual label -> Training (small data) -> Validation -> Prediction (larger data)
Limitations: labor-intensive labeling (99% of time on labeling datasets, 1% on optimizing Al
algorithms), limited dataset for training, sensitive to training data, fixed model and only for
specific application

e HeTU-v3 revolutionary changes:

O

Pretrain foundation model on Large Data — small labeled data for fine-tune and
transfer to downstream applications

Building foundational models is a new cutting-edge way of working that has emerged
only in recent years with the development of big models and big data.

Self-supervised pretraining, advanced architectures (VitDet, Internimage), efficient unlabeled
data use, improved transfer learning, automated workflow, enhanced scalability and
adaptability for large-scale radio astronomy image analysis.

Cutting-edge scalable solution for large-scale surveys



HeTu-v3: overview and compare with HeTu-v1

More advanced architecture:
o VitDet and Internlmage models, advantages over ResNet in HeTu v1

Larger datasets:
o ASKAP RACS-Mid survey, 50 times more objects, Potentially better performance on extended
and complex sources
Classification:
o four classes (CS/CJ/FRI/FRII) with guessed label
New Training methods: two-step approach:
o  Pretraining a foundation model (unsupervised learning with big data)
o Transfer learning to downstream applications with little training data
Performance Metrics:
o mAP processing speed per image, accurate rates for different types

Applications: ASKAP RACS, EMU,

Outcome and future directions
o  Multi-source data, larger-scale datasets



Workflow of HeTu v3

1. Three stages: data preparation, experimentation, interpretation.
2. Large multi-band datasets, advanced Al architectures

3. HeTu-v3 is not just a technical improvement, but a reimagining of how we approach
the complex downstream astronomical tasks.

HeTu Classification and Identification of Radio Galaxy Images

Data Preparation

Interpretation
Data & Images

Searching radio

T e —~ P —~3
8 Manipulate Data Training Model Improvement E E E
images

RACS PanSTARRS WISE
Download
Images
Cutout =
@ Images | -] ‘
G i =
; - . Design HeTu : - :
Define Labeling Architecture Validation Test
morphological

classification




Foundation models: paradigm change in computer vision

The Foundation Model has been widely adopted and used since around 2020 with the release of OpenAl's GPT-3
Step 1 Pretrain foundation model. Unsupervised or supervised learning with big training data
Step 2 Transfer to downstream applications. Incorporate downstream module and use little training data, flexibly applied to a
wide range of tasks such as classification, target detection, and image synthesis.
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Internlmage — Multi-task General Perception

Image Classification

Instance Segmentation

Object Detection fi

Video Tracking
Image-Text Retrieval
Image Captioning

Text Generation \

Image Synthesis

Generalist Model

i) 1

Retrieval

‘ﬂcue’
Classification

= Transfer

Deployment

An overview of of Internlmage’s training and applications

Popular foundation vision models

CLIP OpenAl 2021
Florence Microsoft 2021
DINO Meta 2021
Internlmage | Shanghai Al Lab | 2022
EVA BAAI 2022
Flamingo Deepmind 2022
ImageBind Meta 2023
LVM UCB 2023




Radio data: diverse freq
Optical data: diverse band
Infrared data
X-ray data
etc...

var ious
scenar ios

var ious
resolutions

var ious
modalities

Pretraining data

(Unlabeled radio images)

HeTu v3: Pretraining Step

Pretraining method
(self-supervised
learning)

Constrastive learning: MoCo v3

(for CNN models)
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Foundation Model: ResNet, VitDet, Internimage

Advantages of Internlmage and Vision Transformer
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Experimental Results on Model Architecture
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Flops AP AP@s50 MAP AP@50
0.113T  0.452 0.747 0.380 0.717
0.286T  0.490 0.800 0.404 0.773
0.105T 0.503 0.840 0.429 0.833



18°45'

40'

35'

Data used in HeTu v3: ASKAP RACS-mid survey

Survey : the entire southern sky up to a declination of +49 degrees at a frequency of 1367.5 MHz, with a

declination-dependent resolution of 8.1-47.5 arcsec, and a median sensitivity of 0.2 mJy/PSF.

Intermediate resolution between FIRST and NVSS: getting more detail without losing the full structure
The release consists of 1493 unique tiles (and 88 duplicate observations), more than 800GB (raw data)
~ 3000 images per observation data

4 million objects (50 x more than HeTu v1) — to train foundation model

FIRST (1400 MHz)

Improvement in sensitivity and resolution available with RACS-mid compared with NVSS and FIRST.
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https://research.csiro.au/racs/

Experiments on Pretraining

Pretraining using 4.5M unlabeled radio images on VitDet and Internimage are ongoing, should be even

better

Detection Instance Segmentation
Model Pretraining Data Pretraining Method
mAP AP@50 mAP AP@50
ResNet-50 ImageNet Supervised learning 0.452 0.747 0.380 0.717
ResNet-50 4.5M radio images Self-supervised learning 0.502 0.843 0.434 0.836




HeTu-v3: Transferring downstream tasks

Downstream Tasks

E.g. galaxy morphological
classification
ResNet , .
Select 2000 images for training
g = IR MR s 2 Output \
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Vision Transformer (ViT) [ Transformer Encoder

Class
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e Manual labeling

e Imbalance: augmentation on CJ, FRI,
FRII classes; Seesaw Loss function to
tackle class imbalance

e Uncertain classifications: reduce their,

weights during training to reduce 1 . . . .
contamination and misrepresentatiodI
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Incorporate MaskRCNN module to enable foundation model to

do instance segmentation

HeTu-v3: Transfering Details

Seesaw Loss : A loss function to tackle class imbalance
problem

Cross-Entropy Loss Seesaw Loss

Rolalign) . (§> gradients of positive samples on a tail class Mitigation A,‘VC:::Q,:"
(§> eradients of negative samples on a tail class ~ COmpensation ]"@A,“ ‘
Detection Instance Segmentation
Model Loss function
mAP AP@50 mAP AP@50
ResNet-50 Cross-entropy 0.502 0.843 0.434 0.836
ResNet-50 Seesaw Loss 0.525 0.870 0.451 0.865




Output example using HeTu - v3
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Summary of HeTu-v3

HeTuv3
CLARAN HeTu v1 HeTu v2 ResNet, VitDet &
ResNet ‘ ResNet + FPN ‘ ResNet + FPN ‘ Internimage + FPN
Faster R-CNN Faster R-CNN Mask R-CNN Mask R-CNN
(ICRAR) (China SRC) (China SRC + Shanghai Al Lab)

HeTu-v3 represents a paradigm change in astronomical image analysis,
revolutionizing the traditional workflow with an innovative approach to building
large-scale foundation models. It uses massive unlabeled data to train a generic
foundation model, and then employs efficient transfer learning to tackle specific
tasks. This approach not only achieves superior generality and generalization
capabilities, but also greatly reduces the dependence on limited labeled data.
Using advanced visual models such as VitDet and Internlmage, HeTu-v3 is able to
handle complex radio source morphology and shows even better scalability and
performance improvement potential as data volumes increase.



HeTu-v3: not only a source finder

Astronomaly: Active Learning for Anomaly Detection

Discovery of New Anomalous Objects: Successfully used to
discover new Odd Radio Circles (ORCs) (Lochner et al. 2023)

HeTu v3's pretrained foundation model could be fine-tuned for
anomaly detection and other downstream tasks

Feature Extraction: advanced vision models (VitDet, Internimage)
could provide rich feature representations for anomaly detection

Efficiency: HeTu-v3's ability to handle large datasets efficiently
could complement active learning approach

Complementary Strengths: HeTu v3's strong performance in
source detection and classification could be combined with
active learning approach for more effective anomaly detection

Potential Workflow:
o Use HeTu-v3 for initial source detection and feature extraction

o Apply active learning framework to identify potential
anomalies

o Leverage human expertise for final verification and discovery

Backend —
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Other source finding and classification tools



Classifying Radio Galaxies with CNN

Objective: Apply deep machine learning to classify radio images
of extended sources based on morphology using CNN

Focus: Fanaroff-Riley (FR) class radio galaxies and bent-tailed
morphology radio galaxies.

Data Source: VLA-FIRST

Training Data: ~200 sources per class, augmented with rotated.
Methodology: Used a "fusion classifier" combining results of
binary classifications.

Performance:

o Bent-tailed galaxies: 95% precision, 79% recall

o FRIlclass: 91% precision, 91% recall

o FRIl class: 75% precision, 91% recall

Processing Speed: <0.17 s per image classification.

Advantages:

o Comparable accuracy to manual classification

o Significantly faster processing

o Eliminates need for handcrafted feature extraction

Implications: Demonstrates the potential of deep learning for

handling large datasets
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Objective: SKA Big Data makes automatic object detection and instance
segmentation crucial for source finding and analysis. Evaluate and
compare the performance of multiple DL models for object detection an¢
semantic segmentation in radio images.

Methodology:

o Applied various DL methods to radio astronomical images

o Two types of tasks: object detection and semantic segmentation.

Data: Used images obtained from ATCA, ASKAP, VLA, RGZ

Metrics: Evaluated models based on prediction performance (precision,
recall, F1 score) and computational efficiency.

Significance: aims to guide astronomers in selecting appropriate deep
learning methods for analyzing large-scale radio astronomy datasets,
particularly in preparation for the SKA era

Conclusion:

O

YOLO-Based Methods: Best for object detection, particularly effective
for images with low signal-to-noise ratios.

Tiramisu Model: Best for semantic segmentation, balancing
performance and computational efficiency.

Transformer-Based Models: Limited by high computational needs and
data requirements.

Radio astronomical images object detection

and segmentation: a benchmark on deep
learning methods

Original Article | Published: 05 May 2023
Volume 56, pages 293-331,(2023)  Cite this article

Renato Sortino et al. 2023, ExpAs

Renato Sortino 4, Daniel Magro, Giuseppe Fiameni, Eva Sciacca, Simone Riggi, Andrea DeMarco,

Concetto Spampinato, Andrew M. Hopkins, Filomena Bufano, Francesco Schillird, Cristobal Bordiu &

Carmelo Pino

g] 380 Accesses D 3 Citations @ 3 Altmetric  Exploreall metrics >
Abstract

In recent years, deep learning has been successfully applied in various scientific domains.
Following these promising results and performances, it has recently also started being
evaluated in the domain of radio astronomy. In particular, since radio astronomy is
entering the Big Data era, with the advent of the largest telescope in the world - the Square
Kilometre Array (SKA), the task of automatic object detection and instance segmentation is
crucial for source finding and analysis. In this work, we explore the performance of the
most affirmed deep learning approaches, applied to astronomical images obtained by radio
interferometric instrumentation, to solve the task of automatic source detection. This is
carried out by applying models designed to accomplish two different kinds of tasks: object
detection and semantic segmentation. The goal is to provide an overview of existing
techniques, in terms of prediction performance and computational efficiency, to scientists
in the astrophysics community who would like to employ machine learning in their
research.


https://link.springer.com/article/10.1007/s10686-023-09893-w#auth-Renato-Sortino-Aff1-Aff2

YOLO-CIANNA: Galaxy detection with deep learning in radio data applied
to the SKAO SDC1

e Objective: Develop a new source detection and characterization
method for massive radio astronomical datasets using deep
learning techniques.

e Method: YOLO-CIANNA, a customized deep-learning object
detector specifically for astronomical datasets.

e Key Features:Adapted from YOLO (You Only Look Once) object
detection framework

e Dataset: Tested on simulated 2D continuum images from the
SKAO SDCT1 (SKA Science Data Challenge 1) dataset.

e Performance: Outperforms previous published results on the
SDC1 dataset
Efficiency: Capable of real-time detection
Innovations: Addresses specific challenges of

e source finding (RA, Dec) to locate the

radio-astronomical images (high dynamic range, crowded fields, centroids and/or core positions,

small objects) e source property characterization
Availability: Open-source and included in the CIANNA framework (integrated flux density, possible core
Implications:Promising for handling the massive data volumes fraction, major and minor axis size, major
expected from the upcoming SKA axis position angle)

e source population identification (one of
SFG, AGN-steep, AGN-flat)



YOLO-CHADHOC in SDC2 by MINERVA team

Dual Pipelines:

O  YOLO-CIANNA and CHADHOC, Final catalog merges results from both
pipelines for improved completeness and purity
YOLO-CIANNA:

Customized version of YOLO network developed in SDC1

Implemented in CIANNA framework (GPU-accelerated)

Works on 64x64x256 (RA, Dec, Freq) pixel sub-volumes

21 3D-convolutional layers

Predicts source parameters: Flux, Hlsize, w20, PA, and |

Processes 70 input cubes per second on a V100 GPU

CHADHOC (Convolutional Hybrid Ad-Hoc pipeline):

o Three-step: detection, selection, parameter estimation

o Detection: Traditional algorithm with smoothing and S/N thresholding

o Selection: CNN to identify true sources among detections

o Parameter estimation: Separate CNNs for each source parameter

Merging Catalogs: Combines strengths of both pipelines

o CHADHOC better at typical sources, YOLO better at low-brightness
sources

o Careful merging improves overall catalog quality

o O O O O O

2683 Hi sources. 1286 x 1286 x 6668 pixels to
represent a 1degree/2 field of view across the
full Challenge frequency range 0.95-1.15 GHz
(redshift 0.235-0.495) Credits: SKAO

Achieved highest score in SDC2

Effective in handling large data volumes
expected from SKA

Demonstrated robustness in dealing with
varying noise levels and source morphologies



Uses Gal-DINO computer vision networks

EMU's ML-Enabled Pipeline

Predicts:

(¢]

(e]

(¢]

Radio morphology categories
Bounding boxes for radio sources
Potential infrared host positions

Training:

(e]

(¢]

~5,000 visually inspected radio galaxies

Includes compact and extended morphologies

Performance:

(e]

(e]

99% of predicted bounding boxes have Intersection over Union

(loU) > 0.5

98% of predicted host positions within 3" of ground truth

Application:

(¢]

(e]

(¢]

Applied to EMU Pilot Survey (EMU-PS)
Processed 220,102 Selavy components
Identified 211,625 radio sources

Advantages:

(e]

(¢]

(e]

Efficient processing of large datasets
Handles complex morphologies
Enables automated catalogue construction

Trained Gal-DINO Network
Consolidated Catalogue of EMU-PS.

Directory with 8'x8' radio and Infrared image cutouts
‘centered at ~220K Selavy components.

?

and add them to the consolidated catalogue as an island.

?

o Calibrate,
only the central source in each of the e oty
~220K images. higH 1o low oonflclal 1o0p from n=1 1o n=220K.

RG-CAT: Detection Pipeline and Catalogue of Radio Galaxies in the
EMU Pilot Survey (Gupta et al. 2024)

Trained on approximately 5,000 visually inspected radio
galaxies and their infrared hosts.

Designed specifically for radio galaxy detection and
classification.

Focuses on radio and infrared image pairs.



SIimCLR - self-supervised learning for radio data analysis

Obijective: Explore contrastive learning methods to learn suitable
radio data representations from unlabeled images for various
downstream tasks.

Data Source: Unlabeled images from ASKAP EMU and SARAO
MeerKAT GPS surveys; Smaller labeled datasets from different
radio surveys for evaluation

Methodology: Used self-supervised learning to build foundational

models; Explored two image extraction modes

Evaluation Tasks:

o Radio source morphology classification

o Radio source instance segmentation

o Search for objects with peculiar morphology

Key Findings:

o Demonstrated benefits of self-supervised foundation models
for radio data analysis

o Assessed performance on larger test datasets compared to
previous studies

o Explored advantages of models trained on "random" survey
datasets vs. "source-centric" datasets

Inspection/Visualization

SnGtRmodel S. Riggi et al. (2024) :
= ! JRE—
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\ Fine-tuning “>~.____ Image multi-label
%, model with classifier
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Source . Sourcemasks
- Coclassification)

Figure 1. Schema of self-supervised learning for radio data analysis.

e Implications:
o Provides ready-to-use foundational models for SKA
precursor and other radio surveys
o Models can be used as feature extractors for similar
analyses or new tasks
e Future Directions:
o Further exploration of advantages from different
training dataset construction methods
o Potential applications in upcoming large-scale radio
surveys



Potential challenges and limitations

Data Quality: Performance dependent on training data quality and completeness

Extended Sources: Difficulty in accurately detecting and characterizing complex, extended
structures

Rare Morphologies: Limited ability to identify unusual or rare source types

Scalability: Computational demands for processing extremely large datasets

Interpretability: "Black box" nature of deep learning models can limit understanding of decisions
Generalization: Models may not perform well on data from different instruments or surveys
Class Imbalance: Underrepresentation of rare source types in training data

Noise Handling: Varying performance in presence of different noise characteristics

False Positives: Risk of misclassifying artifacts as real sources

Adaptability: Need for retraining or fine-tuning for new data types or scientific goals



Other Al applications in Radio Astronomy



Al applications in SKAO Data Challenge 2: 3D souce finding

Machine Learning Frameworks TensorFlow and PyTorch were commonly used for building and
training models

CNNs were used for image-based tasks, such as source detection and classification

Random Forests: Employed for classification tasks and parameter estimation

Ensemble Methods: Combining predictions from multiple independent techniques

Transfer Learning: Some teams used pre-trained models and fine-tuned them for specific HI source
detection tasks

Data Augmentation techniques used to address class imbalance and improve model generalization
Automated Pipelines: Development of efficient, automated source-finding pipelines to handle large
data volumes

Custom Al Models: Some teams developed specialized models tailored for HI source detection and
characterization

Either algorithmic (e.g. SoFiA) or ML/DL-based methods are not perfect, combining classical
source finding methods with machine learning techniques for improved performance
Unsupervised Learning: Some approaches used unsupervised methods for initial source detection
or data preprocessing



HI source finding workflow: SOFIA + DL

Wang et al 2024 |
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HI source finding workflow: FLASHfinder — Working on a more efficient way to filter out good from bad candidates
Overwhelming imbalance between false positives (due to systematic/processing artefacts) — visual inspection required !



RFI Occupancy (%)
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Telescope operation: Automated survey scheduler for

Al in radio astronomy: application areas

ASKAP, Maximises efficiency (both $$ & time)

Diagnose system health of large telescope arrays such as
LOFAR (NL; Mesarcik + 2020)

Data validation: RFI removal from observations using (e.g
Yang+2020; Sadr+2020; Mesarcik+2022; Pritchard+2024)

Reduce noise artefacts in reconstructed images by filling
the gaps in the Fourier plane — bypass typically bespoked
imaging decisions (Schmidt + 2022)

Synthesis imaging: closure invariants + ML (Thyagarajan,
Hoefs & OIW 2024 submitted to RASTI)

Redshift (z)

0.23 0.21 0.19 0.17 0.15 0.13
T T T T T T

0.11 0.09

0.07
T

0.05 0.03 0.01
T T T

1150

1
1200

1
1250

1300
Frequency (MHz)

1350 1400

Credit: Jonghwan Rhee

1450

AP
@ available
) antennas
&
SAURON

O

if < 15 min before
end of SBID

cron job
(5 min) @

availability

array mode
- band filter
- central frequency
- zoom mode

—

sauron_initialises
sauron_checks

'

pool of observations
AS101: EMU
AS102: WALLABY
AS103: POSSUM
AS104: DINGO
AS106: CRAFT
AS107: VAST
AS108: GASKAP
AS109: FLASH
AS110: RACS
AS111: LIGO
AS112; SWAG-X
AS113: Other/Guest

sauron_collates
Q)

1l

SAURON database
- SST pool tables
- SST constraint table
- pending bandpass table @

S m—

-
SST constraints
- minimum # of dishes
- must-include dishes
- ducting avoidance
- Sun avoidance
- Moon avoidance

- daytime avoidance
- hour angle limit

- |

(2]

available fields for
scheduling

sauron_decides

(]

v

chosen field +
parameters (+ week
schedule)

sauron_schedules
sauron_finalises
sauron_concludes @

- pending
- observed

if successful

Q
ASKAP
observations

successful?

schedblock database

——

SAURON Scheduling Autonomously Under Reactive

Observational Needs
Moss & ASKAP Operations /Computing team 2021



Al in radio astronomy: application areas

e Fast Extragalactic Transient Candidate Hunter (FETCH) is a deep TR Val Ace (%)
learning-based software designed to classify fast radio burst (FRB) T R
candidates and distinguish them from radio frequency interference (RFI). VGG16 (4) 99.40

DenseNet169 (11) 95.40
e transfer learning techniques to train state-of-the-art deep neural networks for DenseNet201 (7) 94.05
ar2..q . DenseNet121 (4) 88.23
classifying FRB and RFI candidates.
. . DMT Model Val Acc (%)

e Data: simulated FRBs and real RFI candidates from Green Bank telescope e oy

e 11 deep learning models, each achieving an accuracy and recall above 99.5% i R i
on the test datasets InceptionV3 (31) 99.46

InceptionResNetV2 (34) 99.35
Sim FRB RFI rulsar

1375

e Able to detect all FRBs with SNR>10 in data
from other telescopes, e.g. ASKAP and Parkes
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e While other approaches like those developed by -
Connor & van Leeuwen (2018) and Zhang et al. e
(2018) have shown success with specific 1525
telescopes, FETCH aims to provide a more o
generic solution that can be widely applied
across different instruments
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Key challenges for future Al in radio astronomy

Developing explainable Al: As Al becomes more integral to discoveries, ensuring the interpretability
and explainability of Al models will be crucial.

Handling increasing data volumes: Next-generation telescopes will produce even more data,
requiring continued advances in Al processing capabilities.

Integrating Al across the full astronomy workflow: Expanding Al from specific tasks to more holistic
integration across observation, analysis, and theory.

Balancing automation and human expertise: Finding the right balance between Al-driven
automation and human scientific insight and creativity.

Ethical considerations: Addressing potential biases in Al systems and ensuring responsible use of
Al in scientific research.

Cross-disciplinary collaboration: Fostering collaboration between astronomers, computer
scientists, and Al researchers to drive further innovations.



Development Platform: OpenMMLab

OpenMMLab (from Shanghai Al Lab)

THEEXERE=

Shanghai Artificial Intelligence Laboratory

One of the most popular open-source algorithm platforms for computer vision.

We use OpenMMLab to train foundation models, transfer to downstream tasks, and deploy models.

https://qgithub.com/open-mmlab
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https://github.com/open-mmlab

Astronomical Foundation Models

Key chal lenges

The design of models tailored for astronomical
observational data represents a cutting—edge
exploration. However, the results can sometimes
lack interpretability and may not always adhere
to physical laws.

Solutions and innovations

Delve into the sophisticated capabilities of LLMs to intelligently interlink astronomical

knowledge and data, all grounded in textual analysis.

Leveraging the state—of—the—art advancements in foundation models.

astronomical data analysis
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Thank you for your attention

e HeTu-v3 combines advanced Al networks, self-supervised learning, and foundation
models, representing a major leap forward in the way of astronomical image analysis

e The foundation models will continue to fuse data from multiple sources, empowering
astronomers to accelerate research, discover rare phenomena.

e By enabling efficient processing of massive datasets, HeTu-v3 enables automated
analysis in future SKA-scale surveys, pushing the frontiers of cosmic exploration

Contact; Tao An, antao(@shao.ac.cn

Thanks to my colleagues for helping to prepare this presentation
Shaoguang Guo, lvy Wong, Kaipeng Zhang, Huaxi Chen
Teams from China SKA Regional Centre, Shanghai Al Lab, Zhejiang (Al) Lab
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