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Open questions in galaxy evolution / cosmology

1. How do galaxies form and evolve?

2. What are the mechanisms that produce different galaxy morphologies?

3. What were the properties of the first galaxies formed in the Universe?

4. How has the star formation rate of galaxies changed over time?

5. What is the nature of dark matter? How is it distributed around galaxies?
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Open questions in galaxy evolution and cosmology



Gravitational lensing
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• Gravitational lensing: magnification 
and distortion of background 
objects (e.g. far galaxies) due to the 
presence of a strong gravitational 
field source (e.g. massive galaxies) 
in the foreground.
Rare phenomenon, predicted by 
Einstein’s general relativity.

• Magnification of very distant and 
faint sources allows for detailed 
study of galaxies in the early 
Universe (cosmic telescope). Time-
delay allows for measurements of 
𝐻0 (cosmic clock).

• Lensing also allows to determine 
the mass within the Einstein radius 
in galaxies (cosmic scale), providing 
constraints on dark matter and 
gravitational theories.



• Projected mass within Einstein radius measurement from strong lensing is 
the most precise mass measurement possible, not requiring any modeling a 
priori.

• Angular diameter distances for both deflector and source are required to 
estimate mass. Knowledge of background cosmology is also required.

• With modeling, it is possible to infer quantities
related to dark matter content of galaxies and other
properties (𝑀DM, 𝑓DM, mass density slope, IMF, …)
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Lensing: a cosmic weighing scale
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• ESA’s Euclid telescope is designed to map the geometry of the Universe, and 
to understand the nature of dark energy and dark matter.

• Euclid WIDE will survey ∼ 109 galaxies over a significant portion of the sky 
(∼ 14,000 deg2).

• High resolution imaging + spectroscopy is ideal for detecting gravitational 
lenses.
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Euclid: overview

Mellier+24



• Euclid FoV: 0.57 deg2. HST FoV (ACS): 
0.003 deg2.

• The pixel scale of Euclid, however, is
worse than HST:
➢Euclid pixel scale: 0.1 arcsec/pixel

➢HST pixel scale (ACS): 0.05 arcsec/pixel
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Euclid: The advantage of a big FoV

Euclid has 181 times the 
area coverage of HST!

Images of gravitational lenses will be lower 
resolution than HST images, but we will find much 

more of them.

Marleau+24
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Euclid: Some examples

NGC6744 IC342
Hunt+24



• Issues with data volume: Euclid WIDE will generate petabytes of data.

• Visual inspection of “interesting” galaxies (2 × 108 galaxies) in Euclid WIDE 
would take 30 years, by working 24h/24, with 5 seconds per inspection.

• Traditional modeling techniques based on maximum likelihood and MCMC 
techniques are computationally expensive (run times between hours to 
months, depending on model complexity and dataset resolution)
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Euclid: challenges with traditional analysis

We need automated methods for 
lens finding!

We need automated methods for 
lens modeling!



• LEMON1 (LEns MOdeling with Neural networks): Bayesian Neural Network 
(BNN) based on a modified version of a ResNet architecture2 (CNN for 
feature extraction + Bayesian fully connected layer for parameter 
estimation).

• Goal: numerically estimate (best value + uncertainty) the lens mass (Singular 
Isothermal Ellipsoid) and light (Sérsic) distribution from the image of a 
gravitational lens.

• LEMON can estimate both aleatoric uncertainty (associated to intrinsic 
quality of image) and epistemic uncertainty (associated to the quality of the 
training set).
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LEns MOdeling with Neural networks: LEMON

1Gentile+22
2He+15



• Mean LEMON training time: 85 epochs for 40,000 training lenses, 
∼ 8.4 hr (550 ms/step∗∗) with RTX 4080 GPU and NVMe M.2 PCIe Gen. 3 
storage*.

• Training time scales with training set dimension (830 ms/step∗∗ for 90,000 
training lenses, same configuration).

• Mean LEMON parameter inference time on test-set*: ∼ 8.7 ms/lens (∼
279 ms/step∗∗, around 30 seconds for inference on 100,000 lenses).
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LEMON: general performance

*Results depend on hardware configuration and number of parameters. 
**Batch sizes: 64 for training, 32 for test.



Four main datasets:

1. 50,002 mock Euclid lenses “with companions” (i.e. contaminants other 
than main lens), produced from the Euclid Flagship simulation1,2;

2. 50,002 mock Euclid lenses “without companions”, produced as above;

3. 50,000 mock Euclid lenses produced by the lens modeling software 
PyAutoLens3;

4. 130 real “Euclidized” lenses.
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LEMON: Datasets used

1Castandar+24
2Metcalf et al. in prep.

3Nightingale+15,18,21



• LEMON trained on datasets 
1. + 2. (80,000 lenses of both 
kinds), applied on test set of 
10,002 lenses of both kinds;

• All parameters are recovered 
by the network;

• Lens Sérsic index shows a 
non-linear trend with large 
scatter.
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Recovery of test set lenses’ parameters

Euclid preliminary
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Aleatoric and epistemic uncertainties’ trends
Epistemic uncertainty as a function of the mass and light parameters shows systematically lower 
values with respect to the aleatoric uncertainty.

Euclid preliminary



• LEMON trained on datasets 
1. + 2. again, applied on 
AutoLens lenses such that 
𝑅Ein ∈ 0.5, 2.0  (23,256 
lenses);

• All parameters are 
recovered by the network;

• Einstein radius for 𝑅Ein ≲
1 arcsec and lens effective 
radius are systematically 
overestimated.
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Recovery of AutoLens lenses’ parameters

Euclid preliminary
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Recovery of Einstein radius for Euclidized/real Euclid lenses

Euclidized lens Euclid lens (Perseus)

Einstein radii are recovered with great accuracy for both Euclidized and 
Euclid real lenses.

Euclid preliminary

Acevedo Barroso et al. in prep.



• Training set size: 40,000 Euclid-like power-law lenses 
without companions. Validation and test set sizes: 5,001 
lenses.

• All mass and light profile parameters are recovered; large 
scatter for power-law slope and Sérsic index.

• Training and testing only on the lens light does not 
improve the recovery of the light profile parameters.
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Future prospects: power-law+shear mass profile results

Recovery of power-law slope improves 
substantially by removing the light of the lens.

Can be obtained by subtracting the lens’ light 
from the images and training LEMON on images 

without the lens light.

Euclid preliminary



• LEMON trained on mock Euclid-like Singular Isothermal Ellipsoid 
lenses recovers correctly all the parameters of the test set. Sérsic 
index is recovered less precisely.

• LEMON can generalize its parameter inference capabilities on 
different mock Euclid-like samples, such as those produced by 
PyAutoLens.

• LEMON manages to recover the Einstein radius for both Euclidized 
lenses and real Euclid lenses from the Perseus ERO field.
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Conclusions
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