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- Gamma-Ray Bursts |

. GRBs are events that can generate more energy in 10
seconds than the Sun can in its entire lifetime

e They are transient events that can last from milliseconds

to several hours

e Can be produced by various sources

o  Neutron stars mergers
o Collapse of massive stars

Several space missions (like AGILE and Fermi) and
ground-based instruments work to discover.new GRB every day

image: http://go.nasa.gov/17R2cf3
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t50=4.67209
t90=18.8803
! h fluence=1.18871e-05
! flux 1024=12.763
2000 1 i ' dets=['n0', 'n1', 'n2']
: ---- coeff_Ireg_flnc=-0.03
: coeff _Ireg_t90=-0.2
: I [ bkgd_range=[(-49.58, -5.0), (35.83, 69.17)]
Data are considered as time series | ; i b - R i
5 1500 ! Ton=IC_t90_range=(0.38, 19.26)
= | i 1 IC_t50_range=(2.37, 7.04)
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Unfortunately, GRBs are rare phenomena so they are
difficult to obtain.

detection
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GRBs detection and analysis
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The Fourth Fermi-GBM Gamma-Ray Burst Catalog: A Decade of Data

A. von Kienlin, C. A. Meegan, W. S. Paciesas, P. N. Bhat, E. Bissaldi, M. S. Briggs, E. Burns, W. H. Cleveland, M. H. Gibby, M. M. Giles, A. Goldstein, R. Hamburg, C. M. Hui, D. Kocevski, B. Mailyan, C. Malacaria, S. Poolakkil, R.
D. Preece, O. J. Roberts, P. Veres, C. A. Wilson-Hodge

We present the fourth in a series of catalogs of gamma-ray bursts (GRBs) observed with Fermi's Gamma-Ray Burst Monitor (Fermi-
GBM). It extends the six year catalog by four more years, now covering the ten year time period from trigger enabling on 2008 July 12 to
2018 July 11. During this time period GBM triggered almost twice a day on transient events of which we identifyied 2356 as cosmic
GRBs. Additional trigger events were due to solar are events, magnetar burst activities, and terrestrial gamma-ray flashes. The intention
of the GBM GRB catalog series is to provide updated information to the community on the most important observables of the GBM-
detected GRBs. For each GRB the location and main characteristics of the prompt emission, the duration, peak flux, and fluence are
derived. The latter two quantities are calculated for the 50-300 keV energy band, where the maximum energy release of GRBs in the
instrument reference system is observed and also for a broader energy band from 10-1000 keV, exploiting the full energy range of
GBM's low-energy detectors. Furthermore, information is given on the settings of the triggering criteria and exceptional operational
conditions during years 7 to 10 in the mission. This fourth catalog is an official product of the Fermi-GBM science team, and the data
files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center (HEASARC).

Comments: 273 pages, 10 figures, 8 tables. This is a 10 year catalog update of arXiv:1603.07612
Subjects: High Energy Astrophysical Phenomena (astro-ph.HE)
Cite as: arXiv:2002.11460 [astro-ph.HE]

(or arXiv:2002.11460v2 [astro-ph.HE] for this version)

ref: The i:ourth Fermi-GBM Gamma-Ray Burst Catalog: A-Decade of Data
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_ADL model to simulate GRBs -

We developed a Deep Learning
model to generate GRBs’ LCs

Obtain larger dataset of LCs W

DL model

Train and evaluate new GRBs
detection methods



Histogram t50 vs t90 with bins logscale

t50

Preprocessing: |

250 A

LCs obtained from 4th Fermi-GBM

GRB Catalog
o 3.608 GRBs, 11.869 LCs 200 1

LCs of the same GRB detected by
multiple detectors are independent

time series
o as data augmentation

We selected only long GRBs (t:0 > 2s)
We extracted LCs of 220 seconds and
bins of 1 second

All the light curves time are in the range

Frequency
=
18]
o

100 A
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[-20, 200] o 02 100 10t o2 10
o respect to the trigger time to t90a nd t50 distribution, with double bell shape. Red line divide the
classification of long and short GRBs.




bn091106762 detector na

Preprocessing: [ "

W w
Filters to drop outliers:
: filter only long GRBs (with teo>2s)
. filter only the GRBs for which there exists
at least one Nal detector
: filter only the LCs with no missing data in g
between the t90 time interval
ol | 2::;:1;)‘3‘:‘?2,9?373
— ;Z:fgif::g_:io[:g;; -2.67), (14.67, 33.0)]
[ fspec_range=(-3.07, 13.31)
Ton=IC_t90_range=(-1.28, 13.31)
[ IC_t50_range=(1.28, 12.29)
| base || FI  F2 F3| F4 F5 F6 e
numLCs | 11869 [[9896 9867 9822| 9064 7099 5964 : P .
GRS | 3608 ‘3012 2005 2992| 2761 2486 2233 Drop LCs with missing values in the burst flow range




bn130112286 detector n3

1900 t50=14.848

- - . m g
Preprocessing:
- 7 1800 - fluence=2.61353e-06
: . : flux_1024=5.69536
- dets=['n0', 'n1', 'n3', 'n5']

1700 A : ---- coeff_Ireg_flnc=0.76
Filters to drop outliers: | coeff_Ireg_t90=0.75
: [ bkgd_range=[(-64.0, -33.33), (9.33, 57.67)]
- filter onIy Iong GRBs (With t90>2$) ~ 1600 A : [ fspec_range=(-30.72, 6.14)
: filter only the GRBs for which there exists E | | — ng”tzgc-:nog-;ir('?lezz_z('gz’gz'_75':)'63)
at least one Nal detector = 15001 i
. filter only the LCs with no missing data in 5 i | |
between the t90 time interval § 1400 1 I |‘ “ * RS
: filter LCs with an estimated angular - } I: || il ik d i
coefficient of LR -0.4 < coef < 0.4 1300 "EI“I” IR i
ol |
1200 A || i
| |
1100 A : i
—E’)O (I) 510 1(I)0 1.%0 2(I)O
Time (s)
- | 1‘1388669 | 9?;6 91;7 91;;2 95;’4 71339 5524 Drop LCs with strange trends in background, using a Linear Regressor (LR) fit
num S . . , -
num GRBs | 3608 ‘ 3012 3005 2992 | 2761 | 2486 2233 on background retglonsfv;ntg I;R /\s angfu>la0r ;:oefﬂment coef
s.t. coef < -0. coe :
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Preprocessing. |8

i |
1000 - Ik i W’ I
Filters to drop outliers: ﬁpﬂ'ﬂi:;"'”ﬂ IWMIM

: filter only long GRBs (with teo>2s)

. filter only the GRBs for which there exists 8004
at least one Nal detector

. filter only the LCs with no missing data in
between the t90 time interval

. filter LCs with an estimated angular
coefficient of LR -0.4 < coef < 0.4 400

. filter LCs, after computing Li&Ma GRB
significance, with o > 3.0

600 -

t50=18.4322
t90=46.3366
fluence=7.8107e-06
flux_1024=4.47005
dets=['n7', 'n8', 'nb']
---- coeff_Ireg_flnc=0.03
coeff _Ireg_t90=0.01

Count Rate (count/s)

200 A [ bkgd_range=[(-46.25, -5.0), (83.12, 145.63)]
[ fspec_range=(-1.02, 51.2)
Ton=IC_t90_range=(0.51, 46.85)
[ IC_t50_range=(2.56, 20.99)
1 1 1
- 0 50 100 150 200
Time (s)

| base | FI F2 F3 F4 | F5 | F6 D . . . L g
rop LCs with low ks r kgroun ing Li&M RB significan
11869‘9896 557 9555 ooei| 7095 | Seea op LCs with low peaks respect to background, using Li&Ma G significance o,

3608 | 3012 3005 2992 2761 2486 | 2233 by comparing photon c_oun_t accumulation in the flow range with re_spect to photon count
accumulation in the background ranges. Drop LCs with 0 < 3.0

num LCs
num GRBs
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Preprocessing. |8

w bwlw l Wﬁ "‘WMW i
1000 - 1 i ”I”‘L B} i
Filters to drop outliers: : ﬁpﬂ'ﬂi:;"'”ﬂ

: filter only long GRBs (with teo>2s)

. filter only the GRBs for which there exists 8004
at least one Nal detector

. filter only the LCs with no missing data in
between the t90 time interval

. filter LCs with an estimated angular
coefficient of LR -0.4 < coef < 0.4 400

. filter LCs, after computing Li&Ma GRB
significance, with o > 3.0

. filter LCs from outliers with InterQuartile 200 A
Range (IQR) method

600 -

t50=18.4322
t90=46.3366
fluence=7.8107e-06
flux_1024=4.47005
dets=['n7', 'n8', 'nb']
---- coeff_Ireg_flnc=0.03
coeff _Ireg_t90=0.01

Count Rate (count/s)

[ bkgd_range=[(-46.25, -5.0), (83.12, 145.63)]

[ fspec_range=(-1.02, 51.2)
Ton=IC_t90_range=(0.51, 46.85)

[ IC_t50_range=(2.56, 20.99)

1 1 |

0 T
-50

50 100 150 200
Time (s)

| base | FI F2 F3 F4 F5 | F6 D . . . L g
rop LCs with low ks r kgroun ing Li&M RB significan
11869‘9896 557 9555 o0Rd 055 | Soea op LCs with low peaks respect to background, using Li&Ma G significance o,

3608 | 3012 3005 2992 2761 2486 2233 by comparing photon c_oun_t accumulation in the flow range with re_spect to photon count
accumulation in the background ranges. Drop LCs with 0 < 3.0

num LCs
num GRBs




: VA E GA N N | e . , j Training recipe:
' ’ ' (38 - epochs: 1000

| . - - batch size: 16
This DL model combines advantages o I ot

Of G ANS and VAES - reconstruction weight: 0.5

- generation weight: 0.5
o learns to encode and decode data
o learns to compare dataset samples i

o this model produces high-quality and W I i“"h LW,M P .
structured generative results while ol ki / L i
preserving latent space structure X 9(2x) p(El2) %
3 modules:
o Encoder il s
o Decoder/Generator 5 N N TS
o Discriminator P ' p(xp|2) ”xé"‘f‘“ [Dis(x), Dis (%), Dis(x,)]
The model is implemented using CNN
layers to capture spatial local Larsen et al. in, 2016

structures



: count rates histograms don't

overlap perfectly but it is still reasonable
m L2 distance: 1.09
m  Wasserstein distance: 0.01

A discrepancy can be noticed.
The rates of the simulated LCs are shifted
further to the left than those of the reals, so
they tend to be weaker

o In PCA a good dispersion of the simulated
LCs is evident

o They are also evenly distributed with the

LCs (blue dots) except in the bottom

part of the plot

m L2 distance:
m Wasserstein distance:

2.73
0.05

count normalized
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Histogram flattening Original vs Synthetic
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1 peak

Peaks extracted from a LC Simulated

‘Number of peaks
analysis -~ . -

3
OOOOO

Estimate the similarity between real samples
and simulated data using dimensionality

reduction techniques:

o classify light curves by the number of
peaks that compose them ol ! |

3 peak

Peaks extracted from a LC Simulated

°
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‘Number of peaks
analysis 5

Estimate the similarity between real samples

and simulated data using dimensionality
reduction techniques:

o classify light curves by the number of
peaks that compose them

o fit a dimensionality reduction
technique on real data to find clusters
of data that have the same labels in
common

o plot the reduced simulated data and
analyze the distances with the labeled
real data

UMAP Component 2

UMAP of real labelled data for number of peaks
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. Simulated or real GRBs?
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" Simulated or real GRBs?

Real LC Simulated LC

Real or Simulated? Real or Simulated?
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" Simulated or real GRBs?

Real or Simulated? Real or Simulated?
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or real GRBs?

Real LC Simulated LC
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" Simulated or real GRBs?

Real or Simulated? Real or Simulated?
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" Simulated or real GRBs?

Real LC Simulated LC

Real or Simulated? Real or Simulated?
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and extracting features to characterize simulated data
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64ms binned light curve of GRB081222204 detector n0

————————

compared to real ones
n
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Using

- Future works
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Th|s work presents a novel - Small modlflcatlons to the b FUTU RE WORKS
DL modél to generate. - generative model VAEGAN . -
synthetic GRBs' LCs. “tofitourtask. .-~ -1.- An evaluation methods based on !
- SR A 2 00 sl i A - .Bayesian blocks
. o A huge effort Was'spent in . 20 0A conditional version of this
_ This model can be.usedto - ' -the data analysis and - G - model |
.generate a lafge datasetto . preprocessmg which {2 3.5 A probablllstlc generator Ehatl
train and-evaluate GRB- ~ allowed an. |mprovement of - . instead of generating mere LCs . |
. detection methods:* - - - . the training dataset. : 4. ' Combine this model with PINN

if a partlal differential equation of
GRB is found %

e THANKS FOR
G THE ATTENTION
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