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Rubin LSST

Final 10yr Data Release
Images: 5.5 million x 3.2 Gpx
Catalog: 15PB, 37 billion objects

Raw Data
Sequential 30s image, 20TB/night

Prompt Data Product
Difference Image Analysis
Alerts: up to 10 million per night

Prompt Products DataBase
Images, Object and Source catalogs from DIA
Orbit catalog for ~6 million Solar System bodies

Annual Data Release
Accessible via the LSST Science Platform & 
LSST Data Access Centers.
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10 million t-domain candidates/night 
Rubin LSST

PRIMARY LOGO

SECONDARY LOGO

#15284F

#F5622E

#3C8DFF

#D5D5D3

Brokers such as

Möller, Peloton, Ishida +2020

Hosted at CC-IN2P3 for Rubin



PRIMARY LOGO

SECONDARY LOGO

#15284F

#F5622E

#3C8DFF

#D5D5D3

broad-science 
collaboration

community driven, 
open to everyone

PIs & management team 
Peloton, Ishida, AM



PRIMARY LOGO

SECONDARY LOGO

#15284F

#F5622E

#3C8DFF

#D5D5D3

Supernovae 
SNIa, SN, PISN

Kilonovae 
Orphan, GW+KN, Fast transients

Nuclear transients 
AGN, TDE

Gamma Ray Bursts

Allam+2023, Leoni+2022, Möller+2022

CNRS MITI grant

Grandma+Fink 2022,2023

Biswas+2022,2023 

Russeil+2022

Solar System Objects 
Discovery, tracking

Le Montagner+ 2023

Carry+2024


CNRS MITI grant

Space Awareness 
Satellite glints
Karpov+2023,2022

LSST simulations: ELAsTiCC
Fraga+ 2024

Anomalies
Pruzhinskaya+ in prep.

Community driven, join us!  

Gondhalekar+ in prep.
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Homogeneous spectral and 
photometric properties


6

Direct measurement 
cosmic expansion

Type Ia supernovae

Rubin > 1 million DES ~ 2k
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DES-SN3YR: S����������� 11
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Figure 5. Example spectral classifications from the DES-SN3YR dataset. Spectra are plotted in blue, with the best-fit SN template overplotted
in black. Fits are derived using superfit. Prominent spectral features used to classify each object (�6150, �4100 for SNe Ia; �4861, �6563
for SNe II) are highlighted with vertical red dashed lines. The classification of each object and facility used are highlighted in each panel.

The number of spectroscopic classifications increased dra-
matically as the DES survey progressed. While the number
of AAT nights increased modestly (from 10 to 12 to 16), the
number of DES-SN spectra obtained from all other observa-
tories over the first three seasons rose from 27 to 127 to 203.
This expansion of resources resulted in 24/75/152 spectro-
scopically classified SNe Ia and 34/95/179 spectroscopically
classified transients in DES Y1/Y2/Y3, respectively. We note

that the e�ciency of the survey pipeline itself also improved
through the seasons; both the speed at which DES data were
processed and the quality of artifact rejection increased dra-
matically from Y1 to Y3. These improvements also con-
tributed to the year-on-year increase in classified SNe Ia.

5. SELECTION FUNCTION

Spectroscopic classification

415 SNe Ia

(expected 2,000 detected)
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Photometric classification

ML algorithm



1. Supervised + simulations


2. Unsupervised


3. AL for improving training sets



1. Supervised + simulations


2. Unsupervised


3. AL for improving training sets
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SuperNNova

Möller+2019

Recurrent Neural Networks


Bayesian Neural Networks 

(MC dropout & Bayes by Backdrop)


Handles irregular time series


Used with DES, PS, ZTF data

Soon Rubin!

Möller+ 2019, 2022b

SuperNNova

Pytorch, many configurations possible
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State-of-the-art simulations
Vincenzi+2020

Cosmological biases from photometric classification in DES-SN 9

Table 3. Details of the di�erent SNN training samples.

SNN Simulation used Core-collapse SN Normalisation Number of SNe in Percentage of Ia, pec Ia and core-collapse
model name for SNN training template library training sample in the training sample
SNN(Base) Baseline V19 cosmo 287,000 50, 6, 44
SNN(J17) J17 J17 cosmo 287,000 50, 3, 47

SNN(DES-CC) DES-CC DES-CC cosmo 240,000 50, 5, 45
SNN(global) Baseline V19 global 287,000 50, 6, 44

SNN(randomHost) Baseline, random V19 cosmo 155,700 50, 5, 45
host association

Table 4. Contamination and e�ciency measured for the AllSNIa classifier (rows) on di�erent simulations (columns) after applying a %Ia > 0.5 cut.

Selection criteria Contamination E�ciency
Only pec Ia Baseline LFs+O�set Dust(H98) J17 DES-CC (Baseline)

AllSNIa, no SALT2 selection † 2.6 22.5 31.7 22.0 28.5 25.8 -
AllSNIa 2.1 8.2 11.6 8.5 8.7 9.8 100.0
AllSNIa+Chauvenet 1.0 3.1 5.3 3.4 3.7 3.2 98.7
AllSNIa+Chauvenet, 2 <0.15 0.7 2.2 4.0 2.3 1.6 2.5 89.4

† Fraction of contaminants after SALT2 fit loose cuts of G1 2 [�4.9, 4.9] and 2 2 [�0.49, 0.49] (i.e., without applying the SALT2-based selection discussed
in Section 2.3). (see V21).

Table 5. Contamination and e�ciency measured for di�erent SNN models (rows) tested on di�erent simulations (columns).

SNN model0 Contamination after testing SNN on di�erent simulations E�ciency
Only pec Ia Baseline LFs+O�set Dust(H98) J17 DES-CC (Baseline)

SNN(Base) 0.4 0.8 1 1.1 0.9 1.0 1.4 99.5
SNN(J17) 0.7 1.7 2.8 1.9 1.0 1 2.1 99.2
SNN(DES-CC) 0.9 2.0 3.2 2.3 1.9 1.6 1 99.0
SNN(global) 0.8 2.1 3.5 2.1 1.4 2.3 97.7
SNN(randomHost) 0.7 1.3 1.9 1.5 1.3 1.6 98.1

0 See Table 3 for a description of the training approach utilised for each SNN model.
1 We highlight in bold the contamination measured using the same simulation both for training and testing.
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Figure 4. Contamination (panel (a)) and e�ciency (panel (b)) using three SNN models SNN(Base), SNN(J17) and SNN(DES-CC) measured on our Baseline
simulation. All contamination and e�ciency percentages are measured relative to the bin, not relative to the total sample. In panel (a), we present contamination
as a function of SALT2 G1 (upper left), 2 (upper right), redshift (lower left) and Hubble residual (lower right). Panel (b) is the same as panel (a), but showing
e�ciency. Contamination and e�ciency are defined in Section 4.1.

MNRAS 000, 1–23 (2021)

Vincenzi, Sullivan, Möller et al. 2021

>98% accuracy 

DES: Light-curves + host-galaxy redshifts

SuperNNova
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Möller+2022
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1484 SNe Ia

Möller+ 2022a, Vincenzi+ 2024, DES+ 2024

DES Collaboration 2024

Largest high-z SN Ia sample from a single survey for cosmology

DES: Light-curves + host-galaxy redshifts
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The Dark Energy Survey: supernova cosmology results 7
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Figure 4. Hubble diagram of DES-SN5YR. We show both the single SN events and the redshift-binned SN distance moduli.
Redshift bins are adjusted so that each bin has the same number of SNe (⇠ 50). The 1635 new DES supernovae are in blue,
and in the upper panel they are shaded by their probability of being a Type Ia; most outliers are likely contaminants (pale
blue). The inset shows the number of SNe as a function of redshift (same z-range as the main plot). The lower panel shows
the di↵erence between the data and the best fit Flat-wCDM model from DES-SN5YR alone (third result in Table 2), and
overplots three other best fit cosmological models — Flat-⇤CDM model from DES-SN5YR alone (magenta line, first result in
Table 2), Flat-w0waCDM model from DES-SN5YR alone (green line, fourth result in Table 2), and Planck 2020 Flat-⇤CDM
model without SN data (dashed line, ⌦Planck

M =0.317 ± 0.008).

tions” (BBC) framework (Kessler & Scolnic 2017). In
particular, bias corrections �µbias,i are estimated from
a large simulation of our sample. The simulation mod-
els the rest-frame SN Ia spectral energy distribution
(SED) at all phases, SN correlations with host-galaxy
properties, SED reddening through an expanding uni-
verse, broadband griz fluxes, and instrumental noise
(see Fig. 1 in Kessler et al. 2019a). Using Eq. 1 there re-
mains intrinsic scatter of ⇠ 0.1 mag in Hubble residuals.
Following the numerous recent studies on understanding
and modelling SN Ia dust extinction and progenitors
(Wiseman et al. 2021, 2022; Duarte et al. 2022; Dixon
et al. 2022; Chen et al. 2022; Meldorf et al. 2023), we
model this residual scatter using the dust-based model
from Brout & Scolnic (2021); Popovic et al. (2023a),
which improves on the previous commonly used models
in Kessler et al. (2013) that are based on SALT2 error
models in Guy et al. (2010); Chotard et al. (2011). This
intrinsic scatter remains the largest source of systematic
uncertainty from the simulation.

As we do not spectroscopically classify the SNe and
thus expect contamination from core-collapse (CC) su-
pernovae, we perform machine learning light-curve clas-
sification on the sample following Vincenzi et al. (2023);
Möller et al. (2022). We implement two advanced ma-
chine learning classifiers, SuperNNova (Möller & de
Boissière 2020) and SCONE (Qu et al. 2021) and use
state-of-the-art simulations to model contamination (es-
timated to be ⇠ 6.5%, see Table 10 and Sect. 7.1.5 of
Vincenzi et al. 2024). Classifiers are trained using core-
collapse and peculiar SN Ia simulations based on Vin-
cenzi et al. (2021) and using state-of-the-art SED tem-
plates by Vincenzi et al. (2019); Kessler et al. (2019b).
These DES simulations are the first to robustly repro-
duce the contamination observed in the Hubble residuals
(Vincenzi et al. 2021; Vincenzi et al. 2024, Table 10).

For each SN, the trained classifiers assign a probability
of being a Type Ia, and these probabilities are included
within the BEAMS framework to marginalize over core-
collapse contamination and produce the final Hubble Di-
agram (Kunz et al. 2012; Hlozek et al. 2012). The final

DES Collaboration 2024



A. Möller | ML4Astro 2024 | amoller@swin.edu.au 16

DES: Light-curves + host-galaxy redshifts
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10 Möller et al.

Figure 8. Distributions of redshift, SALT2 G1, SALT2 2, i-band peak magnitude 8peak and host-galaxy r-band magnitude for the HQ sample classified without
host information in this work, the photometrically selected SN Ia sample with spectroscopic host-galaxy redshifts M22 and the spectroscopically classified SNe
Ia.

Figure 9. SALT2 stretch and colour, host-galaxy mass and A magnitude as a
function of the redshift for the HQ sample classified without host information
(green), the photometrically selected SN Ia sample with spectroscopic host-
galaxy redshifts (in M22 in orange) and the spectroscopically classified SNe Ia
(in blue). For the sample classified without host information (green) we show
two versions: one using SNphoto-z (solid line) computed simultaneously with
colour and stretch; and the other using the host-galaxy spectroscopic redshift
when available (dotted line). The error bars show the dispersion for a given
redshift bin. The HQ sample probes SNe Ia in fainter hosts than the M22
sample at all redshifts as well as lower mass hosts from z>0.4.

Figure 10. SNIa stretch as a function of host-galaxy mass. In coloured lines we
show the median values for the HQ sample classified without host information
(green), the photometrically selected SN Ia sample with spectroscopic host-
galaxy redshifts (in M22 in orange) and the spectroscopically classified SNe
Ia (in blue). The error bars show the dispersion for a given redshift bin. In grey
we show each of the measurements for a given SNe Ia in the z-free sample.
Each row uses a di�erent redshift for the DES SNe Ia HQ sample and thus its
x1 measurement, first row SNphoto-z, second row host-galaxy spectroscopic
redshifts if available and third row a mixture of host-galaxy spectroscopic
redshift and when not available SNphoto-z. The z-free sample shows for any
choice of redshift, a higher stretch at higher mass than the M22 sample.

MNRAS 000, 1–16 (2020)

Spec Ia

Photo Ia host specz 
(DES cosmology)

Photo class SNphoto z 
(almost complete sample!)

Möller+  2024

2,411 high quality SNe Ia

DES: Light-curves + host-galaxy redshifts
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Gondhalekar+ in prep.

Unsupervised SN vs AGNs

Preliminary!!!
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Gondhalekar+ in prep.

https://fink-portal.org/download 

https://fink-portal.org/download
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Gondhalekar+ in prep.

Preliminary!!!
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Gondhalekar+ in prep.

Euclidean, cosine distance….

Preliminary!!!
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Gondhalekar+ in prep.

~0.019 s /light-curve
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Select the best

Your target

(e.g. SNIa)

“Known events” Algorithm
Train Evaluate

Unknown events
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“Known events” Algorithm
Train Evaluate

Unknown events

Select the 
most unsureClassify


Get labels

Active Learning
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Early SNe Ia

M. Leoni, E. E. O. Ishida, J. Peloton and A. Möller: Fink: early supernovae Ia classification using active learning

Fig. 2. Alert data and sigmoid fit for alerts associated with SNe Ia (objectId:ZTF20acbnwyb, candid: 1371214444115015006),
Galaxy (AGN-like) (objectId:ZTF18acqgxel, candid: 1403450403715015001), eclipsing binary (objectId:ZTF17aaaehog, candid:
1303433212615010040) and RRLyr star (objectId:ZTF18aatiauu, candid: 1543383561615015006). Points and errorbars denote the observed
values. Dashed lines show approximations obtained from the sigmoid fit (Section 3.2).

3.2. Feature extraction

All surviving epochs were converted from ZTF magnitudes m
and magnitude error �m into SNANA (Kessler et al. 2009) flux
units,

f = 10�0.4⇥m+11, (1)
� f = ↵ ⇥ �m ⇥ 1010 ⇥ exp (�↵ ⇥ m) (2)

with ↵ = 9.21034. Subsequently, observations in each filter were
independently submitted to a sigmoid fit,

S (ti) =
c

1 + e�a(�ti�b) , (3)

where �ti = ti � min(t) is the observation time of the i-th data
point since first detection. Employing a least square minimiza-
tion routine and initialization values

a0 =
max( f ) �min( f )

(N � 1)
,

b0 =
1

aguess
log
"

cguess

min( f ) � 1

#
,

c0 = max( f ),

where N is the total number of points surviving the filtering for
this alert, we obtained the 3 features for each alert and band from
the best fit values of a, b and c. Three other features were ex-
tracted per band: the quality of the fit, represented by

�2 =

NX

i=1

(S̃ i � f̃i)2

S̃ i
, (4)

where S i is the flux estimate for the i-th epoch using the best fit
values for a, b and c, and tilde quantities are related to underlined
ones by

X̃i =
XiP
j X j

; (5)

the mean signal to noise ratio (SNR),

SNR =
1
N

NX

i=1

fi
� fi

(6)

and the total number of epochs used in the fit, N.
In summary, for each alert we have a total of 6 parameters,

[a, b, c, �2,SNR,N], per band. The input matrix is constructed by
concatenating the parameters corresponding to [g, r] bands for
the same alert in one line. Figure 3 gives us a glimpse of how
the Ia and non-Ia alerts are located in projections of this high di-
mensional parameter space. Our final input matrix is composed
of 23 840 lines (alerts) and 12 columns (features), this corre-
sponds to 15 950 unique sky objects. The composition of this
alert sample in classes is shown in Table 1. From this table, we
noticed that although the feature extraction reduced considerably
the data volume, it maintained the overall proportion between
classes present in the original raw data.

3.3. Classifier

Following the framework outlined in Ishida et al. (2019), we
used a Random Forest classifier (Breiman 2001). This is an en-
semble method which uses a number of decision trees (Breiman
et al. 1984), constructed from di↵erent sub-samples of the train-
ing set. Once the forest is constructed, the estimated classes for
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Fig. 4. Evolution of classification results as a function of the active learning loop. In all panels the orange and blue lines show results from random
and uncertainty sampling, respectively. The dashed regions mark 1 standard deviation over 100 realizations. The initial training sample in all
experiments consisted of 10 alerts (5 randomly selected from each class) and at each loop only 1 object was added to the training sample (batch =
1).

Fig. 5. Classes of the queried alerts as a function of the learning loop.
The plot shows queries selected by the uncertainty sampling strategy
over 100 realizations.

November/2020. The user can access alerts and the light curves
from their corresponding objects through the science portal10.

Following the procedure described in Section 3.2, in order
for an alert to receive a score from this classifier it is required
at least 3 observed epochs in each filter. Thus the number of
classifiable alerts is strongly influenced by the telescope obser-
vation strategy. In order to minimize the e↵ect of this require-

10 https://fink-portal.org

ment, for the purpose of feature extraction, we also consider ob-
served epochs which fail the broker’s quality cuts, but were in-
cluded in individual alert history, thus allowing for alerts with at
least 1 valid point, among the 3 required by the filtering process
(Section 3.1), to be classified. In practice, we found that epochs
which fail the broker’s quality cuts were due to poor signal-to-
noise ratio rather than clear boguses (see Möller et al. (2020) for
a discussion on the quality cuts). In order to tag an alert as an
early supernova Ia candidate, we have a set of 6 criteria11: (a) Ia
probability larger than 50% from the early supernova Ia module
described in this work, (b) Ia probability larger than 50% from
either one of the deep learning classifier based on SuperNNova
(Möller & de Boissière 2020) deployed in Fink, (c) no match
with galactic objects from the SIMBAD database, (d) non-bogus
probability higher than 50% from the RealBogus algorithm (Ma-
habal et al. 2019; Duev et al. 2019), (e) Star/Galaxy classifica-
tion score from SExtractor above 40% (Bertin, E. & Arnouts,
S. 1996), and (f) the associated object holds no more than 20
photometric measurements.

Alerts fulfilling the above criteria were advertised to the
community via publication in TNS. Over this period (01/Novem-
ber/2020 to 31/October/2021), 809 early SN Ia candidates were
reported, from which 535 were spectroscopically confirmed.
Among the confirmed set, 459 (86%) were confirmed as SNIa
while the remaining ones were shown to belong to other SN
types12.
11 https://tinyurl.com/FinkIaFilter
12 Except one LBV star.
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D2. PROJECT DESCRIPTION 

PROJECT TITLE  ―  Explosive Astrophysics from Siding Spring Observatory 

PROJECT AIMS AND BACKGROUND 

Throughout ancient times, stars in the night sky appeared overwhelmingly static, except for a few rare ‘guest stars’ or 
‘novae’ that appeared suddenly, centuries apart, and then faded away within weeks to months, never to be seen again. 
Today, we know these ‘transients’ to be distant explosions: supernovae, gamma ray bursts, and merging neutron stars, 
but there are also others that so far defy classification. We try to understand what they are, the physics that underpins 
them, and how they shape and affect their surroundings, including the potential to impact life on Earth. 

The study of explosive astronomical transients is a field that is now entering a golden age. This is due partly to new 
telescopes that will detect orders of magnitude more transient sources via their electromagnetic radiation than has been 
possible in the past, and partly to new facilities that can detect transient sources using alternative ‘messengers’, such as 
gravitational waves, gamma rays and neutrinos. Because explosive transients are typically only briefly visible, 
understanding their physics requires rapid follow-up with facilities that can observe them shortly after they occur. Such 
follow-up is best achieved by using a distributed global network of robotic telescopes that can both discover events and 
instantly and automatically respond with detailed follow-up observations.  

Located in the southern hemisphere and west of the major transient discovery facilities in South America, the telescopes 
at Siding Spring Observatory (SSO) in northern NSW are ideally placed to be a key part of this global network.  

This project aims to link telescopes at Siding Spring Observatory into a fully automated network 
that can discover and investigate explosive astronomical events. By linking these telescopes to one 
another and to telescopes distributed around the world, it will be possible to study these transitory 
events in exquisite detail soon after they occur and before they fade away forever. 

SSO is Australia’s largest optical astronomical observatory. It is home to over a dozen telescopes, many of which are 
dedicated to studying astronomical transients. In 2022, two new facilities dedicated to discovering transients will 
commence construction at SSO: the ARC-funded DREAMS project, which will discover transients in the as-yet-
unexplored near-infrared wavelength domain, and GOTO-South, which is seeking the electromagnetic counterparts of 
gravitational wave events. SSO is also home to the ANU 2.3-metre telescope (the second largest optical telescope in 
Australia), which is in the process of being fully automated. It will be a key facility in the SSO network.  

 

 

The project has four key objectives: 

1. Create a network of telescopes at Siding Spring Observatory, the SSO Transient Network, that enables time-
critical observations of explosive astrophysical transients to be performed automatically and at short notice;  

2. Develop software to interface this network into the wider global network of transient discovery machines, such 
as the Legacy Survey of Space and Time (LSST) on the new billion-dollar Rubin Observarory; 

3. Complete the automation of the ANU 2.3-metre telescope and integrate it into the network; and 

4. Build a new tertiary mirror mechanism for the ANU 2.3-metre telescope to allow rapid switching between 
different instruments for rapid follow-up of transient objects. 

 

An image of Siding Spring Observatory 
(SSO) looking east. The SSO Transient 
Network will initially include the visible and 
near-infrared imaging capabilities of 
GOTO-South and DREAMS, and the 
automated ANU 2.3-metre telescope 
equipped with the WiFeS spectrograph. 
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2 CV, 16 SN Ia, 5 SN II,1 SN Ib, 2 SN Ibn, 1 SN Ic, 1 
microlensing event…

Möller et al. in prep.
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Robotic Network @ Siding Spring Observatory
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but there are also others that so far defy classification. We try to understand what they are, the physics that underpins 
them, and how they shape and affect their surroundings, including the potential to impact life on Earth. 

The study of explosive astronomical transients is a field that is now entering a golden age. This is due partly to new 
telescopes that will detect orders of magnitude more transient sources via their electromagnetic radiation than has been 
possible in the past, and partly to new facilities that can detect transient sources using alternative ‘messengers’, such as 
gravitational waves, gamma rays and neutrinos. Because explosive transients are typically only briefly visible, 
understanding their physics requires rapid follow-up with facilities that can observe them shortly after they occur. Such 
follow-up is best achieved by using a distributed global network of robotic telescopes that can both discover events and 
instantly and automatically respond with detailed follow-up observations.  

Located in the southern hemisphere and west of the major transient discovery facilities in South America, the telescopes 
at Siding Spring Observatory (SSO) in northern NSW are ideally placed to be a key part of this global network.  

This project aims to link telescopes at Siding Spring Observatory into a fully automated network 
that can discover and investigate explosive astronomical events. By linking these telescopes to one 
another and to telescopes distributed around the world, it will be possible to study these transitory 
events in exquisite detail soon after they occur and before they fade away forever. 

SSO is Australia’s largest optical astronomical observatory. It is home to over a dozen telescopes, many of which are 
dedicated to studying astronomical transients. In 2022, two new facilities dedicated to discovering transients will 
commence construction at SSO: the ARC-funded DREAMS project, which will discover transients in the as-yet-
unexplored near-infrared wavelength domain, and GOTO-South, which is seeking the electromagnetic counterparts of 
gravitational wave events. SSO is also home to the ANU 2.3-metre telescope (the second largest optical telescope in 
Australia), which is in the process of being fully automated. It will be a key facility in the SSO network.  
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1. Create a network of telescopes at Siding Spring Observatory, the SSO Transient Network, that enables time-
critical observations of explosive astrophysical transients to be performed automatically and at short notice;  

2. Develop software to interface this network into the wider global network of transient discovery machines, such 
as the Legacy Survey of Space and Time (LSST) on the new billion-dollar Rubin Observarory; 

3. Complete the automation of the ANU 2.3-metre telescope and integrate it into the network; and 

4. Build a new tertiary mirror mechanism for the ANU 2.3-metre telescope to allow rapid switching between 
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• All our data is public fink-portal.org 


• First candidate ID modules: SNe, KNe, SSO, GRB, microlensing…

Rubin is an amazing opportunity and a big data challenge!

Community driven, join us!  

• AL is a good strategy to improve training sets (optimise follow-up)


• This will percolate to simulations (built with templates)


• And then we can use large NNs accurately for precision science!

Supernova ML challenges:

http://fink-portal.org
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Fink will process Rubin data, enrich it with information from other surveys and catalogs, machine-learning
classification scores, and select the most promising events for a wide-variety of science cases. Fink is
already operational processing ZTF data and scales to Rubin’s massive data volumes using state-of-the-art
technologies like distributed computing and machine learning. Fink will communicate Rubin’s most
promising events in real-time to other facilities for valuable observations. It is now the time to prepare
SuperNNova within Fink to be fast and efficient with resources, backwards compatible for the next
decade and to prepare a unique microservice that will allow science not only from Rubin data but
combining data from different facilities around the world.

Part I of this project has been completed with ADACS MoA 2023 programme: making SuperNNova
compliant with industry standards CI/CD and upgrades to new pytorch libraries of most algorithms.

Part II (current) project Goal: Optimisation of SuperNNova to process faster large data volumes and be
deployable for a decade with compatibility. This is the next step towards a microservice for light-curve
classification. There currently exists no such microservice for the community.

The individual goals include:

- Profile to optimize the speed of SuperNNova (SNN)
classification to be efficient with Rubin data
volumes.

- Refactor SNN to optimize the code, eliminate
redundancies and improve general running speed.

- Ensure compatibility with old models: parameter
definition, versioning, reading of pickles.

- Explore alternatives for document formats: pickles
outputs and database format.

- Improve documentation.
- Migrate SWA architecture to the new pytorch (other algorithms were updated in the previous

project).

SuperNNova was developed by myself and a software engineer who is not involved any more. The PI and
Co-Is of this proposal are the co-leads of Fink. We are experts in: Julien Peloton (infrastructure lead,
distributed computing, big data), Emille Ishida (supernovae, ML), Anais Möller (SN and time-domain, ML,
lead SuperNNova). However, we need the expertise of specialized software engineers to fill the voids in our
skills for optimisation.


