Reducing stellar noise in exoplanet observables using machine learning

Manuel Perger

Institut de Ciéncies de l'Espai (ICE-CSIC) Institut d'Estudis Espacials de Catalunya (IEEC) Barcelona, Spain

Radial velocities, planetary transits, transmission spectra

Radial velocity measurements

Manuel Perger

Institute of

Space Sciences

Reducing stellar noise in exoplanet observables

Stellar phenomena affecting observations

oscillations: min; cm/s

Institute of

Space Sciences

convection/granulation/flares min to hrs; m/s

spots/faculae/plagues several rotation periods m/s to km/s

magnetic cycle spot evolution, number and position, years

instrumental precisions ~1 m/s stellar activity >2-3 m/s Earth twin RV 9 cm/s

JWST precision ~20 ppm stellar activity >100 ppm Earth twin ~50 ppm

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

Manuel Perger

Reducing stellar noise in exoplanet observables

Magnetic activity affecting stellar spectra

Parameterization with Cross -Correlation Function (**CCF**) and its *moments* (**activity indices**)

Doppler shift induced by a **planetary companion** is achromatic and is an actual translational shift.

Shifts induced by **magnetic effects** (e.g., spots & faculae) depend on wavelength and are only due to asymetries and shape changes of the lines/CCF.

line features can be (more or less) **sensitive to magnetism** – Zeeman effect, line broadening, varying absorption level, etc.

Institute of

Space Sciences

Synthetic observables of a spotted rotating star

Forward modellling of radial velocities and light curves

Modes

RV: CCF of high resolution spectra Photometry: low-resolution spectra Phoenix spetra models (Husser et al. 2013) 500 to 50000 nm

Stellar parameters

Teff = Tphot = 2600 - 12000 Klogg 3.5 - 5.0Metallicity -4.0 - 1.0Radius Mass Rotation period Inclination Differential rotation Limb darkening laws Convective shift & Center-to-limb Bisector (CIFIST models, Ludwig et al. 2009)

Evolving spot map

date of appearance lifetime of spot latitude longitude Radius Evolution law N spots Spot ΔT = Tphot - Tspot Facula ΔT = Tfac - Tphot

Herrero et al. (2016) Rosich et al. (2020) ICE team (in prep.)

https://github.com/dbarochlopez/starsim

StarSim time-series data products

Space Sciences

Institute of

SOAP (Boisse et al. 2012) SOAP-T (Oshagh et al. 2013) SOAP2.0 (Dumusque et al. 2014) SOAP-GPU (Zhao & Dumusque 2023)

Sun-as-a-star time-series data

HARPS-N spectrograph

- High Accuracy Radial velocity
 Planetary Search project
- stabilised cross-dispersed échelle spectrograph
- Roque de Los Muchachos observatory (La Palma, Spain)
- 3.58-m Telescopio Nazionale Galileo (TNG)
- High resolution R=115 000
- Optical wavelength: 383 to 690 nm

Solar observations

- Since 2015
- 5-min cadence (averaging out oscillations)
- 150 000 disk integrated spectra (8000 nightly-binned)
- Median SNR =350

Dumusque et al. (2020) https://dace.unige.ch/sun/?

Catania, 12th July 2024

ML4ASTRO2

Manuel Perger

Reducing stellar noise in exoplanet observables

Problem set

Problem

 Stellar phenomena have to be mitigated in all exoplanet observations

Input data

- Test star data (e.g. Sun), model data (StarSim)
- High-resolution spectra, CCF, activity indices time series, temporal correlation
- (Data contemporaneous to transit event)

Output data

- Radial velocity data
- (Transmission spectrum)

Results

- Model data shows good capabilities of the method (down to 2% rms reduction)
- Test star data can be reduced from 10% (AU Mic, active star) to 50% (Sun)
- Better modelling (StarSim3)
- Different (better) spectral parameterization

Manuel Perger

Reducing stellar noise in exoplanet observables

A machine learning approach for correcting radial velocities using physical observables

M. Perger^{1,2}, G. Anglada-Escudé^{1,2}, D. Baroch^{1,2}, M. Lafarga³, I. Ribas^{1,2}, J. C. Morales^{1,2}, E. Herrero^{1,2}, P. J. Amado⁴, J. R. Barnes⁵, J. A. Caballero⁶, S. V. Jeffers⁷, A. Quirrenbach⁸, and A. Reiners⁹

- ¹ Institut de Ciències de l'Espai (ICE, CSIC), Campus UAB, Carrer de Can Magrans s/n, 08193 Bellaterra, Spain e-mail: perger@ice.cat
- ² Institut d'Estudis Espacials de Catalunya (IEEC), c/ Gran Capità 2-4, 08034 Barcelona, Spain
- ³ Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
- ⁴ Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain
- ⁵ School of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
- De Beurs et al. (2022) https://iopscience.iop.org/article/10.3847/1538-3881/ac738e/pdf
- ⁸ Perger et al. (2023): Astrohttps://www.aanda.org/articles/aa/pdf/2023/04/aa45092-22.pdf
- ⁹ Liang et al. (2023) ¹⁹ Aug https://iopscience.iop.org/article/10.3847/1538-3881/ad0e01/pdf
- RecColwell et al. (subm.) cepte https://arxiv.org/pdf/2304.04807Zhao et al. (subm.)https://arxiv.org/pdf/2405.13247

StarSim input data modelling

Different spot maps

600000 EpsEri1000000 AUMicNumber of spots25 to 40Appearance-lifetime to 100Lifetime5 to 100 daysColatitude0 to 180 degLongitude0 to 360 degRadius2.5 to 4 deg

Different time samplings

100 time stamps 0<t<100 days all sets simultaneous 1 x uniformely distributed 2 x randomly distributed 2 x seasonal gap observed sampling

Input time-series data

photometric light curves in *VBI* filters CCF activity indicators: FWHM, BIS and CON uncertainties extracted from observed data AU Mic 30 to 60% Eps Eri 17 to 25%

Output data StarSim models (labels)

radial velocities 90 % training data 10 % test data observed data is test data

Test stars and neural network

AU Microscopii

Epsilon Eridani

Manuel Perger

Reducing stellar noise in exoplanet observables

3072 neurons

ML4ASTRO2 Catania, 12th July 2024

0.5

Manuel Perger

Results on StarSim models

Results on test stars

AU Microscopii

- observed time stamps
- 400000 simulation
- Input: FWHM, and BIS
- Output: RV
- Reduced rms from 132.2 to 13.0 ms-1 (10%)

Epsilon Eridani

- observed time stamps
- 100000 simulation
- Input: FWHM, BIS, and CON
- Output: RV
- Reduced rms from 4.4 to 2.0 m/s (45%)

Manuel Perger

Study on different input data

CCF decomposition:

- Auto correlation function (ACF) shift invariant
- Moments similar to FWHM, BIS, contrast
- CCF principal component analysis (PCA) Eigenvectors
- Autoencoder latent space analysis
- Orthonormal functions
 base function G, orthonormalized to CCF'
 G from PCA or Gaussian fit
 ao: output, stellar activity induced RV
 ai: input, show line distortions perpendicular to CCF'

Transformer models

include time problem through positional embedding

Test stars: AU Microscopii, Epsilon Eridani, Sun, etc.

$$\mathbf{F}(v,t) = \langle \mathbf{F}(v) \rangle + (\underbrace{\epsilon(t) + a_0(t)}_{RV_{obs}}) \langle \mathbf{F}'(v) \rangle + \sum_{i=1}^{N} a_i(t) \mathbf{G}_i(v)$$

Training on synthetic data

Manuel Perger

Reducing stellar noise in exoplanet observables

First results on transmission spectra

Manuel Perger

Institute of

Reducing stellar noise in exoplanet observables

ERC (European Research Council) Advanced Grant Ignasi Ribas

- Detecting ExoEarths
- Starsim3 development
- Stellar data modelling
- General Machine Learning algorithms

SPOTLESS

- RV variations down to 10 cm/s
- Transit spectroscopy down to 10 ppm

https://www.ieec.cat/en/ieec/job-offers/ https://ice.csic.es/about-us/jobs

European Research Counci Established by the European Commission

Manuel Perger

Reducing stellar noise in exoplanet observables