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Scientific Motivation



Tracking Resident Space Objects (RSOs)

Scientific Motivation

• Since the launch of the first satellite in 1957, the near-earth population has been 
increasingly steadily.  

• As the satellite population grew, so did the population of orbital debris.  

• Monitoring RSOs has become ever more important in order to reduce the risk of a 
collision.   

• Measurements provide us with a deeper understanding of the current environment, 
including growth trends and accumulation regions. 

• Ground-based radars play a critical role in space debris monitoring and space 
situational awareness (SSA) programs.
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BIRALES 
Current Setup & MSDS Detector



Current Setup

TRANSMITTER

RECEIVER

BIstatic Radar for LEo Survey
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Current Setup

BIstatic Radar for LEo Survey

• 2 Modes: unmodulated Continuous Wave mode & a Compressed Chirp mode 

• Sensitivity: small objects with a size of 10 cm at 1,000 km 

• Transmitter 

• Diameter                        7 m 

• Maximum Power            10 kW 

• Bandwidth                      410–415 MHz 

• Beam Size                        6 degrees
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Transmitter

BIstatic Radar for LEo Survey
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Receiver: The Northern Cross

BIstatic Radar for LEo Survey
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The Northern Cross

• T-shape array operating at the 408 MHz 

• Steerable in declination only. 

• The E-W arm is a 564 by 29.4m cylindrical parabolic reflector having a total 
collecting area of 1,600 m2. 

• The N-S arm is composed of 64 parallel parabolic-shaped cylindrical antennas (22.6 
by 7.5 m) spaced 10 m apart having a total geometrical area of 10,800 m2. 

• As part of the Square Kilometre Array Design Studies, 32 receivers in 8 cylinders 
were upgraded to use new analog fibre-optic and coaxial digital links

BIstatic Radar for LEo Survey
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Multi-Pixel Beam Mapping

BIstatic Radar for LEo Survey
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Detector Pipeline

BIstatic Radar for LEo Survey
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Detector Pipeline

BIstatic Radar for LEo Survey
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MSDS Detector

• The current pipeline uses a clustering approach 

• Sub-divides the de-noised domain in rectangular boxes using kd binary tree. 

• Each rectangle is further split along an axis (vertical or horizontal) recursively until the number 
of points within the rectangle reaches a predefined leaf size. 

• Each leaf is checked for a line streak using an Agglomerative hierarchical clustering algorithm. 

•  The similarity between clusters is determined, penalising two points whose gradient is not 
within the expected range.

• Cluster's shape is checked for linearity using the inertia ratio. In this formulation, an inertia 
ratio of 1 indicates a circle while a perfect line has an value of 0. 

• The next stage is to correctly merge the individual clusters detected across the leaves into a 
single larger track.

BIstatic Radar for LEo Survey

14



MSDS Detector

BIstatic Radar for LEo Survey

Cutajar et al (2022)
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Planned Expansion

• An upgrade is scheduled for the BIRALES receiver in Medicina 

• Slated for 2025 

• Number of antennas will increase drastically (32 antennas → 684 antennas) 

• Sensitivity will increase ~30 times 

• Beam will be larger 

• Expected Data Rate will mean MSDS will not be able to keep up in real-time.

BIstatic Radar for LEo Survey
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Dataset 
Curation & Preparation



Data Collection & Curation

Building a Dataset for the Model

• Data acquired from the BIRALES archive. 

• ~100 Observations, (~7% Tracking Observations, ~93% Survey Observations) from 
April to November 2023 

• Every observation was labelled using the offline detection pipeline already 
installed in Medicina.  

• The MSDS algorithm was used to label the data by providing the channel/sample 
values of all detected streaks for each beam. It serves as the current benchmark 
with which the new algorithms will be compared against. 
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Data Preparation

Building a Dataset for the Model
• From the collated detections for every observation, the data was prepared as follows: 

• As a general format, all beams were tiled as 1024×1024 images, normalised as 
grayscale images.  

• Will need further tiling prior to being fed to specific models to avoid resizing. 

• Data Augmentation to further increase the number of annotated images was done 
by taking randomly shifted tiles across the face of the beam. 

• If any annotations are present within a tile, values are converted 

• time sample and receiver frequency ➞ pixel coordinates 

• COCO format  was used for all image, annotations, and category mapping
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Data Preparation

Building a Dataset for the Model

• To avoid introducing systematics and ensure that the training, validation and test 
sets are balanced, stratified shuffle splitting was done based on: 

• Beam 

• ratio of single/multiple annotations 

• Maximum Raw Power prior to normalisation, stratified by interquartile range 
bins. 

• Maximum Width of annotations in image, stratified by interquartile range bins.
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Data Preparation

Building a Dataset for the Model

• Full dataset size with annotations: 50,749 samples 

• Final Dataset sizes: 

• Training Set:          30,447 samples 

• Validation Set:       10,152 samples 

• Test Set:                 10,150 samples
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Things to Keep in Mind About the Data

Building a Dataset for the Model

• The visibility, duration and nature of the debris echoes will vary substantially.
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Things to Keep in Mind About the Data

Building a Dataset for the Model

• The visibility, duration and nature of the debris echoes will vary substantially.
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Things to Keep in Mind About the Data

Building a Dataset for the Model

• The visibility, duration and nature of the debris echoes will vary substantially. 

• A large amount are a pixel wide, some only having a width and height of ~20 pixels.  

• Image Rescaling prior to being fed into any model needs to be avoided. 

• Any model used will need significant adjustment for this use case. So a large dataset 
and substantial training time/resources will be required. 

• Since the data is labelled by the MSDS detector, it will be limited to a degree by the 
detector’s recall and precision. 

• Important that any final model is significantly regularised.
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Model Selection



Object Detection

Choosing the Right ML Model

• Care needs to be taken about selecting the right model for the job. 

• Important that training and running inference from the model used is not 
computationally expensive and number of trainable parameters is manageable 
with our resources. 

• Transfer learning from a pre-existing model that is versatile and reliable for 
different use cases would be ideal.
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YOLO Vision Transformer (ViT)

You Only Look At One Sequence (YOLOS)

• YOLOS leverages the ViT architecture, enabling it to effectively capture spatial 
relationships in images.  

• Particularly beneficial for detecting irregularly shaped and positioned objects 

• Originally trained using DETR loss on ImageNet-1k (200 epochs) and COCO2017 (150 
epochs). 

• The base-size model achieves an AP of 42 on COCO2017 validation. 

• We select the small variant (hustvl/yolos-small) for a good balance between performance 
and manageability.  

• Number of trainable parameters: 30.7M
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YOLO Vision Transformer (ViT)

You Only Look At One Sequence (YOLOS)

• Trained using a bipartite matching loss 

• Hungarian matching algorithm achieves a 1–1 mapping from the 100 object 
queries given by the model to a padded list of annotations in the image. 

• To optimise model parameters, a combined loss of the cross-entropy (label 
classifier) and the L1 & Generalised IoU loss (bbox predictor) is used. 

Loss = λclassClfLoss + λboxL1Loss + λgIoUgIoULoss
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YOLO Vision Transformer (ViT)

You Only Look At One Sequence (YOLOS)

Fang et al (2021)
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YOLO Vision Transformer (ViT)

You Only Look At One Sequence (YOLOS)

• Some further preprocessing on our data is required to ensure it is suitable as an 
input for YOLOS. 

• Images are ‘converted’ from grayscale to RGB shape. 

• To ensure z-score normalisation is consistent across the dataset, a sample of 
2000 images are taken to calculate the average image mean and std. 

• Images are further tiled to match the 512×864 shape input. This ensures that all 
resizing is avoided. 

• Only tiles with annotations are kept.
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Preliminary Results



Training Curves

(Very) Preliminary Results

• We are still in the stage of trying to minimise the training loss 

• The results presented here have been trained on 20,643 tiles (10k images) and 
validated on 15,682 tiles (10k images). 

• Training was done on a single Tesla P100-SXM2–16GB GPU 

•  Batch size = 8 

• Linear scheduling with a starting learning rate of the order of 10−5. 

• ~34 hours for 30 epochs
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Training Curves

(Very) Preliminary Results
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Training Curves

(Very) Preliminary Results

• Further Hyperparameter tuning is needed to first continue to minimise the training 
loss as much as possible 

• Both in terms of the model configuration and optimisation during training 

• The loss has not plateaued just yet, so with more epochs and more data, further 
minimisation is likely. 

• Regularising the model to further minimise overfitting will be the next important 
step.
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Promising Inference

(Very) Preliminary Results

• After 30 epochs, the number of FPs, even on the training set, is still very high, 
highlighting the need to minimise the loss further. 

• However, there are consistently a number of inferences with promising 
Intersection over Union (IoU) scores that show that the model is starting to learn. 

• Tends to perform best with longer, wider echoes 

• Expected since the pre-trained model was trained on datasets in which the 
targets are either on the foreground or take up a significant portion of the 
image.
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Promising Inference

(Very) Preliminary Results

Ground Truth
Inference

36



Promising Inference

(Very) Preliminary Results

Ground Truth
Inference
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Promising Inference

(Very) Preliminary Results

Ground Truth
Inference
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Promising Inference

(Very) Preliminary Results

Ground Truth
Inference
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Next Steps & Future Work



Short-Term

Next Steps & Future Work

• Hyperparameter Tuning, both in terms of model and training configuration 

• Get the Training Loss down 

• Regularise the model for stable generalisation 

• Explore model performance across observation SNR, duration & beams. 

• Test a number of other YOLO (CNN-based & transformer-based) pre-trained 
models, as well as other popular model architectures.
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Longer-Term

Next Steps & Future Work

• Develop a simulator to mitigate the reliance on observational data. 

• A mix of observational and synthesised instances will be ideal. 

• Explore whether models trained entirely on our dataset leads to stronger & more 
stable performances. 

• Investigate whether segmentation models perform better or worse than object 
detection models. 

• Integrate the most successful models into the BIRALES detection pipeline and 
ensure real-time performance is maintained.
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Thank You For 
YourAttention! 

Feel free to ask any questions


