

Finanziato dall'Unione europea NextGenerationEU

Extending Cosmic Ray Background using Generative Adversarial Networks

Giovanni Cavallotto (INFN MiB), Stefano Della Torre (INFN MiB)

ML4ASTRO2, Catania 8-12 / 07, 2024

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

100

10 Rigidity [GV]

Boschini et al. (2019)

Cosmic Rays & space experiment overview

NASA/TP-2020-220002, "Space Radiation and Impact on Instrumentation Technologies"

[5] SR-NIEL-7

Displaced

Atom

0.1°

Scientific case of study

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

2000

*

In space environment

Scientific case of study

Experiment with Cryogenic Transition Edge Sensors (TES)
Planck (predecessor)

- 90% of Plank data affected by CR background
- B modes $\approx 10^{-3}$ CMB signal & sensitivity $\approx 30x$ of Plank

Long exposure (faint signal along the visible universe)

Lourdes Fàbrega, Transition Edge Sensors, ALBA, July 10th 2019

Plank CR glitches

[2] A. Catalano et al. (2014)

Cosmic Rays Artificial Background (CRAB)

SPOKE 3

ASTROPHYSICS & COSMOS OBSERVATIONS

WP3

Big Data Analysis, Machine Learning and Visualization

• Main page:

ttps://www.supercomputing-icsc.it/en/spoke-3-astrophysics-cosmos-observations-en/

- Open access repository: <u>https://www.openaccessrepository.it/communities/spoke3/?page=1&size=20</u>
- GitHub: <u>https://github.com/ICSC-Spoke3</u>

Technical Objectives

- Synthetically generate the time series covering the whole mission
- Achieve a reasonable generation **computational time (no ML ≈ 2 30x TOD length**)

 $\sim 10^{-2}$ Training $\sim 10^{-4}$ Production

- Genuine statistically independent AI generation
- Mimic MC data sample **peculiar features**
- Study different mission space environment & periods (**CR flux evolution**)

Methodologies

Why Neural Networks?

- Optimal for image reconstruction
- Generative

Two convolutional neural network approaches:

- Variational Auto Encoder (VAE)
- Generative Adversarial Networks (GAN)

Methodologies Literature comparison

VAE						
	Training & validation	Power spectrum	Frequency spectrum	Bolometer correlation		
Gaussian	minimized	inconsistent	inconsistent	absent		
Bernoulli 1	minimized	consistent	inconsistent	absent		
Bernoulli 2	~minimized	~consistent	~consistent	~consistent		

GAN					
Training & validation	Power spectrum	Frequency spectrum	Bolometer correlation		
minimized (Discriminator) ~minimized (Generator)	consistent	consistent	consistent		

Methodologies

Python & TensorFlow library

- Sequential Convolutional & Deconvolutional NN
- Custom combined training (discriminator & generator)

GAN algorithm (NN couple)

Solutions: Cosmic Ray Artificial Background (CRAB)

Training scheme

1) Pre-training of the discriminator

only for limited epochs

2) GAN building with pre-trained

discriminator

- 3) Complete GAN training
- 4) (Eventually extra discriminator

training steps)

5) Synthetic generation

(generator predict)

Learn the real TODs classification

(starting from a stable point)

Avoid generator dominated

Final TOD outputs

Implementation

Different loss function and training algorithm

Wasserstein GAN

- Wasserstein loss metric
- Easily stuck in local minima
- Not trivial minimization of the loss (not bounded and negative for the generator)
- Accuracy not normalized
- General distribution separation

Cross entropy GAN

- Binary cross entropy loss metric
- Limited and always positive
- Included in the TensorFlow frame
- Trivial implementation of validation metrics
- Not completely stable

Implementation

NN architecture

Model: "Generator"				
Layer (type)	Output Shape	Param		
=======================================		======		
Dense (LeakyReLU)	(None, 265)	26765		
Conv1D Transpose (LeakyReLU)	(None, 265, 8)	88		
Batch Normalization	(None, 265, 8)	32		
Conv1D Transpose (LeakyReLU)	(None, 530, 16)	1296		
Batch Normalization	(None, 530, 16)	64		
Conv1D Transpose (LeakyReLU)	(None, 1060, 32)	5152		
Batch Normalization	(None, 1060, 32)	128		
Separable Conv1D (LeakyReLU)	(None, 1060, 1)	353		
lambda_1 (Normalization)	(None, 1060, 1)	0		
Trainable params: 33766				

1	AAN DET "INVESTIGATION I				
	Model: Discriminator				
	Layer (type)	Output Shape	Param #		
	Conv1D (LeakyReLU)	(None, 1060, 8)	168		
	LayerNormalization	(None, 1060, 8)	16		
	Conv1D (LeakyReLU)	(None, 1060, 8)	648		
	LayerNormalization	(None, 1060, 8)	16		
	Conv1D (LeakyReLU)	(None, 530, 16)	1296		
	LayerNormalization	(None, 530, 16)	32		
	Conv1D (LeakyReLU)	(None, 106, 32)	5152		
	LayerNormalization	(None, 106, 32)	64		
	Dense	(None, 1)	3393		
	=============				
	Trainable params: 10785				

Solutions

Parameter tuning

- Filter kernel (Length of deposit energy relaxation * n)
- Activation (LeakyReLU, ReLU, Tanh)
- Optimizers (Adam, Nadam, SGD) Adam for Generator, SGD for Discriminator

 - Generator SGD (too slow learing Discriminator dominated)
- Synthetic weighting 0.5 (to keep the discriminator focused on real TODs)
- Labem smoothing for generator loss

Preliminary Results

Output metrics example

Known issues

Next Steps and Expected Results

Conclusions:

- > I illustrate the need of modelling CR background in LiteBIRD and similar experiments with TES
- > We show the potential of data augmentation for CR background study
- GANs have instable training

Future Steps:

- > Overcome the mode collapse issues
- > Test the Variational Auto Encoders as alternative
- Conditional generation

Bibliography

- 1) S. L. Stever et al., "Simulations of systematic effects arising from cosmic rays in the LiteBIRD space telescope, and effects on the measurements of CMB B-modes", Journal of Cosmology and Astroparticle Physics, vol. 2021, no. 9, p. 013, Sep. 2021, doi: 10.1088/1475-7516/2021/09/013.
- 2) A. Catalano et al., "Characterization and Physical Explanation of Energetic Particles on Planck HFI Instrument", Journal of Low Temperature Physics, vol. 176, no. 5–6, pp. 773–786, Feb. 2014, doi: 10.1007/s10909-014-1116-6.
- 3) P. A. R. Ade et al., "Planck2013 results. X. HFI energetic particle effects: characterization, removal, and simulation", Astronomy & amp; Astrophysics, vol. 571, p. A10, Oct. 2014, doi: 10.1051/0004-6361/201321577.
- 4) M. J. Boschini, S. Della Torre, M. Gervasi, G. La Vacca, and P. G. Rancoita, "The HelMod model in the works for inner and outer heliosphere: From AMS to Voyager probes observations," Advances in Space Research, vol. 64, no. 12, pp. 2459–2476, 2019, doi: https://doi.org/10.1016/j.asr.2019.04.007.
- 5) M.J. Boschini, P.G. Rancoita and M. Tacconi (2014), SR-NIEL–7 Calculator: Screened Relativistic (SR) Treatment for NIEL Dose, Nuclear and Electronic Stopping Power Calculator (version 10.16); website https://www.sr-niel.org/
- 6) E. Allys et al., "Probing cosmic inflation with theLiteBIRDcosmic microwave background polarization survey," Progress of Theoretical and Experimental Physics, vol. 2023, no. 4, Nov. 2022, doi: 10.1093/ptep/ptac150.

Backup

Scientific case of study

Preliminary Results

Preliminary Results

> WGAN model 21

