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Cosmic Rays & space experiment overview

John D. Wrbanek and Susan Y. Wrbanek Glenn Research Center, Cleveland, Ohio,

NASA/TP—2020-220002, “Space Radiation and Impact on Instrumentation Technologies”

Galactic Cosmic Rays from astrophysical sources Heliospheric modulation by solar wind

Boschini et al. (2019)

❖ Single event effect

❖ CR background

[5] SR-NIEL-7
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Scientific case of study
LiteBIRD study B-mode polarization and 

Inflation from Cosmic Background Radiation:

❖ Making a discovery or ruling out well-

motivated inflationary models

❖ Insight into the quantum nature of gravity

CMB noise superimposion
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Expected LiteBIRD sensitivity

[6] E. Allys et al. (2022)



LiteBIRD (~2032)
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Scientific case of study

▪ 90% of Plank data affected by CR background

▪ B − modes ≈ 10−3 CMB signal & sensitivity ≈ 30x of Plank

Plank CR glitches

[2] A. Catalano et al. (2014)

❖ Experiment with Cryogenic Transition Edge Sensors (TES)

❖ In space environment

❖ Long exposure (faint signal along the visible universe)

Lourdes Fàbrega, Transition Edge Sensors, ALBA, July 10th 2019

Planck (predecessor)
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Monte Carlo simulation VS Machine Learning

CR TOD Background

Modulated CR at L2

Energy deposit in wafer

• Bolometer (thermal)

• TES (current) response

Data post analysis

Detector structure

Our project:

CRAB

Semi analytical

Analytical

Data Augmentation

• Computational expensive

• Time consuming

Expand a small MC sample 

to cover the 3 years mission

Resample & hit injection:

• Insertion artificial harmonics

• Poor statistics

• Sample not independence
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Cosmic Rays Artificial Background (CRAB)

▪ Main page:

ttps://www.supercomputing-icsc.it/en/spoke-3-astrophysics-cosmos-observations-en/

▪ Open access repository: 

https://www.openaccessrepository.it/communities/spoke3/?page=1&size=20

▪ GitHub:

https://github.com/ICSC-Spoke3

SPOKE 3
ASTROPHYSICS & COSMOS OBSERVATIONS

WP3
Big Data Analysis, Machine Learning and Visualization
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https://www.supercomputing-icsc.it/en/spoke-3-astrophysics-cosmos-observations-en/
https://www.openaccessrepository.it/communities/spoke3/?page=1&size=20
https://github.com/ICSC-Spoke3
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Technical Objectives

▪ Synthetically generate the time series covering the whole mission

▪ Achieve a reasonable generation computational time (no ML ≈ 2 - 30x TOD length)

 ~𝟏𝟎−𝟐 Training ~𝟏𝟎−𝟒 Production

▪ Genuine statistically independent AI generation

▪ Mimic MC data sample peculiar features

▪ Study different mission space environment & periods (CR flux evolution)
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Methodologies
𝑾𝒉𝒚 𝑵𝒆𝒖𝒓𝒂𝒍 𝑵𝒆𝒕𝒘𝒐𝒓𝒌𝒔?

• Optimal for image reconstruction

• Generative

Two convolutional neural network approaches:

▪ Variational Auto Encoder (VAE)

▪ Generative Adversarial Networks (GAN)
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VAE GAN
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Methodologies
Literature comparison

Training & 

validation

Power 

spectrum

Frequency 

spectrum

Bolometer 

correlation

Gaussian minimized inconsistent inconsistent absent

Bernoulli 1 minimized consistent inconsistent absent

Bernoulli 2 ~minimized ~consistent ~consistent ~consistent

Training & validation
Power 

spectrum

Frequency 

spectrum

Bolometer 

correlation

minimized 

(Discriminator)

~minimized (Generator)

consistent consistent consistent

VAE

GAN
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Methodologies

GAN algorithm (NN couple) Convolutional Neural Networks

Python & TensorFlow library

• Sequential Convolutional & Deconvolutional NN

• Custom combined training (discriminator & generator)
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Solutions: Cosmic Ray Artificial Background (CRAB)
Training scheme

Forward propagation

Backward propagation

1) Pre-training of the discriminator 

only for limited epochs

2) GAN building with pre-trained 

discriminator

3) Complete GAN training

4) (Eventually extra discriminator 

training steps)

5) Synthetic generation

(generator predict)

Learn the real TODs classification 

(starting from a stable point)

Avoid generator dominated

Final TOD outputs

11



ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Wasserstein GAN Cross entropy GAN

Different loss function and training algorithm

• Wasserstein loss metric

• Easily stuck in local minima

• Not trivial minimization of the loss

(not bounded and negative for the generator)

• Accuracy not normalized

• General distribution separation

• Binary cross entropy loss metric

• Limited and always positive

• Included in the TensorFlow frame

• Trivial implementation of validation metrics

• Not completely stable

Implementation
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Model: "Generator"

Layer (type)                Output Shape              Param

==========================================

Dense (LeakyReLU) (None, 265)               26765                                                                      

Conv1D Transpose (LeakyReLU) (None, 265, 8)            88      

Batch Normalization        (None, 265, 8)            32                                                                        

Conv1D Transpose (LeakyReLU) (None, 530, 16)           1296      

Batch Normalization        (None, 530, 16)           64        

Conv1D Transpose (LeakyReLU) (None, 1060, 32)          5152      

Batch Normalization        (None, 1060, 32)          128       

Separable Conv1D (LeakyReLU) (None, 1060, 1)           353       

lambda_1 (Normalization)         (None, 1060, 1)           0         

==========================================

Trainable params: 33766

NN architecture

Model: "Discriminator"

Layer (type)                Output Shape              Param #   

======================================== 

Conv1D (LeakyReLU)    (None, 1060, 8)           168       

LayerNormalization      (None, 1060, 8)           16        

Conv1D (LeakyReLU)    (None, 1060, 8)           648       

LayerNormalization      (None, 1060, 8)           16        

Conv1D (LeakyReLU)    (None, 530, 16)           1296      

LayerNormalization      (None, 530, 16)           32        

Conv1D (LeakyReLU)    (None, 106, 32)           5152      

LayerNormalization      (None, 106, 32)           64        

Dense                          (None, 1)                 3393                                     

========================================

Trainable params: 10785
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Solutions

• Filter kernel (Length of deposit energy relaxation * n)

• Activation (LeakyReLU, ReLU, Tanh)

• Optimizers (Adam, Nadam, SGD) Adam for Generator, SGD for Discriminator

• Discriminator Adam (too aggressive Discriminator dominated)

• Generator SGD (too slow learing Discriminator dominated)

• Synthetic weighting 0.5 (to keep the discriminator focused on real TODs)

• Labem smoothing for generator loss

Parameter tuning
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Preliminary Results

Output metrics example

Epochs

L
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s

15

Epochs

A
c
c
u

ra
c
y
 s

c
o

re

Epochs

C
o

u
n

ts



ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

EpochsEpochs Epochs

Mode collapse Generator dominated Real data miss classification

Switching win-lose performances in unstable loop The discriminator classify all the TODs as real Loss of discriminator ability to classify real TODs

Known issues
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Next Steps and Expected Results

Conclusions:
➢ I illustrate the need of modelling CR background in LiteBIRD and similar experiments with TES

➢ We show the potential of data augmentation for CR background study

➢ GANs have instable training 

Future Steps:
➢ Overcome the mode collapse issues

➢ Test the Variational Auto Encoders as alternative

➢ Conditional generation
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Backup
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Monte Carlo simulation VS Machine Learning
Space CR modulated radiation 

environment at L2 (HelMod)
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Monte Carlo simulation VS Machine Learning
Propagation of CR inside 

telescope & Energy deposit in 

detector materials (Geant4)

Energy deposit in wafer

Synthetically generate CR energy 

deposit map

• Wafer warming

• TES direct hits

• Bolometer 

correlated white 

noise

• Delta peaks noise 

(after decimation)
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Monte Carlo simulation VS Machine Learning

MC generate TOD output

• 3D bolometer heat transfer model 

and thermal response(COMSOL)

• TES current response calculation

CR Time Ordered Data 

Background
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Scientific case of study
Direct hits Wafer warming

𝐼 𝑠𝑖𝑛𝑔𝑎𝑙 =
𝑉𝑇𝐸𝑆

𝑅(𝑇)
≈

𝑉𝑇𝐸𝑆

𝑎𝑟𝑐𝑡𝑎𝑛 𝑇 − 𝑇𝐶𝑟𝑖𝑡
=

𝑉𝑇𝐸𝑆

𝑎𝑟𝑐𝑡𝑎𝑛 𝑇𝐶𝑅 𝑒−
𝐺
𝐶𝑡 − 𝑇𝐶𝑟𝑖𝑡

∆𝐸𝐶𝑅

𝐶
= 𝑇𝐶𝑅

∆𝑇 = 𝑃𝑇𝐸𝑆 − 𝐺 𝑇 − 𝑇𝑏𝑎𝑡ℎ

∆𝑡

𝐶

𝑇(𝑡) = 𝑇𝐶𝑅 𝑒−
𝐺
𝐶𝑡
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Laser Heating of a Silicon Wafer, Guide
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Preliminary Results
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Epochs
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➢ WGAN model 21

EpochsEpochs
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Preliminary Results
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