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Outline 

• Graph neural network for tracking

• Beam test setup

• Three different GNN approaches: 

SageConv, GAT, GCN
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AI tracking algorithm for space experiments

Ongoing research is focused on developing new tracking algorithms based on AI techniques, which can accelerate current tracking algorithms 

and improve the performances, in particular, in very noisy environments.

A range of models inspired by computer vision applications were investigated, which operated on data from tracking detectors in a format 

resembling images [A deep learning method for the trajectory reconstruction of cosmic rays with the DAMPE mission, Andrii Tykhonov et al, 

Astroparticle Physics 146, April 2023, 102795]. 

Although these approaches demonstrated potential, image-based methods encountered difficulties in adapting to the scale of realistic data, 

primarily due to the high dimensionality and sparsity of the data.

Tracking data are naturally represented as graph by identifying hits as nodes and tracks segments as (in general) directed edges. 

This leads to the investigation of the geometric deep learning approach.

We implemented three versions of tracking algorithms which exploits the potentials of the Graph Neural Networks (GNN), a subset of GDL 

algorithm, for the task of track reconstruction in a model of space experiment.



4

Geometric deep learning: 
Graph neural networks

• A Gentle Introduction to Graph Neural Networks, 
https://distill.pub/2021/gnn-intro/

• Hands-On Graph Neural Networks Using Python, M.Labonne, Packt
Publishing Ltd.

Geometric deep learning is a sub-field of ML focused on learning representations on non-Euclidean domains, such sets and 

graphs.

Graph neural networks are the subset of GDL that operate on graphs, data represented as a set of nodes connected by 

edges.

They have shown remarkable success in tasks such

 node classification (predict the identity or role of each 

node)

 link prediction (predict connection between nodes)

 graph classification (predict the entire property of a graph)

https://distill.pub/2021/gnn-intro/


5

The key idea behind GNNs is to learn representations for nodes and edges in a graph by aggregating information from their local 

neighborhood.

Message passing  mechanism

1. For each node in the graph, gather all the neighboring node embeddings or messages.

2. Aggregate all messages via an aggregated function (sum, mean..)

3. All pooled messages are passed through an update function.

These steps are the key for leveraging the connectivity of graphs. 

By stacking message passing GNN layers together, a node can eventually incorporate information from across the entire graph: after three 

layers, a node has information about the nodes three steps away from it.

Graph neural networks

• U Global attributes

• V vertex or node attributes

• E Edge or link attributes and 

direction



Beam test setup as test for gnn tracking algorithm

π- @ 10 GeV

Beam test set up at CERN T10
The set up has been simulated by using Geant4 toolkit. 
Zirettino has not been included for now.
A beam of π- of 10 GeV/c with inclined tracks of 0.5 deg has 
been simulated.
M0,M1,M2,M3 are fiber tracking layers:
• Fibers are 10 cm long with a radius of 0,25 mm.
• Strip pitch read-out: 0.25 mm 
M2 consists of WLS with a 100mm x 100mm x 3mm  LYSO 
crystal in between. 
The simulation includes the LYSO crystal but considers the 
fiber as the scintillating ones. 
Random noise hits have been added to simulate properly the 
electronic noise, spurious hits related to low-energy particles 
in orbit, backscattering hits…
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Geant4 
simulations

Clustering

Nodes and 
edges
extraction

GNN custom 
format 
preprocessing

GNN

Analytical fit

Graphs are a natural way to represent tracks!

Nodes are the hits inside the tracking detector layers and edges are the inter-layer hit connection.
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Tracking data as graph

node

edge



• The software development has been accomplished by using an in-local JupyterHub with GPU. The GPU for the JupyterHub instance is a 

partitioned GPU created from a 40GB Nvidia A100.  In details, from a  single A100, 7 GPU were generated, each with 5 GB of dedicated 

memory. The computing power of each partitioned GPU is also 1/7 of an A100.

• Tests on the GPU utilization have been accomplished by using a in-local JupyterLab instance with 40GB Nvidia A100-GPU.

• Training of the GNNs has been accomplished by using a in-local GPUs cluster. The available GPUs are NVIDIA A100 40GB and NVIDIA 

V100 32GB.

Software development tools 

Thanks to dr G.Donvito and dr G.Vino from Recas-Bari.

8



• 2,6 million event in graph format
• 500 epochs, 
• lr =0.0001, 
• 3 SageConv layer
• aggregation function=mean

The SageConv algorithm

The SageConv architecture is a variant of GNN architecture.

The aggregation function takes into account the degrees of the nodes in the neighborhood.

SageConv uses the average of the representations of the neighbors, normalized by the degree of each neighbor, as the aggregate representation.

This allows it to capture more fine-grained information about the structure of the graph.

It also uses skip connections to facilitate gradient flow during training.

Specifically, the output of each layer is combined with the input representation of the node.

The concatenated vector is then passed through a fully connected layer to produce the final output of the layer.
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The SageConv algorithm: metrics

5 fold CV accuracy recall precision

train data 0.972±0.007 0.968 ± 0.009 0.9902 ± 0.0014

validation data 0.972±0.007 0.968 ± 0.009 0.9862±0.0024

Performances on test data

• accuracy  0.9665

• recall  0.9631

• precision  0.9873
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The SageConv algorithm: comparison with traditional pipeline
The traditional tracking pipeline minimizes the chi-square between the hits inside each events, then fit the track with a linear function.
The AI pipeline performs the selection of good hits and fit the track with the same linear function.
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The SageConv algorithm: comparison with traditional pipeline

To evaluate the AI pipeline, we compare the differences between the MC director cosines and the ones evaluated by applying the  AI and 
traditional pipeline 

To process 5000 tracks the 

analytical pipeline takes 9 

min and 15 s, the AI pipeline 

takes 114 ms! 12



GAT algorithm

Graph Attention Networks (GATs) are a variant of Graph Neural Networks (GNNs) that leverage attention mechanisms for 

feature learning on graphs.

In standard GNNs, the feature update of a node is typically the average of the features of its neighbors. This approach does not

differentiate between the contributions of different neighbors.

GATs, on the other hand, assign an attention coefficient to each neighbor, indicating the importance of that neighbor’s features

for the feature update of the node. These coefficients are computed using a shared self-attention mechanism, which calculates 

an attention score for each pair of nodes. The scores are then normalized across each node’s neighborhood using a SoftMax 

function.

600 epochs
2,6 million events
learning rate: 1e-4
3 GAT layer

13



The GAT algorithm: metrics

CV 5 fold accuracy recall precision

train data 0.941± 0.024 0.926 ± 0.033 0.9860 ± 0.0038

validation data 0.941 ± 0.024 0.926 ± 0.033 0.9859 ± 0.0038

Performances on test data

• Accuracy: 0.9557

• Recall:  0.9493

• Precision:  0.9849
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The GAT algorithm: comparison with traditional pipeline

The Gat performances are 
similar in terms of time 
consumption to the 
SageConv ones. 
Anyway, for two events out 
of 5000, it does not 
recognize good hits (false 
negatives).
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GCN algorithm

Algorithm performances:

• accuracy: 0,8662 

• Recall: 0,8326

• Precision: 0,9663

The general idea of GCN is to apply convolution over a graph. Instead of having a 2-D array as input as in the classical CNN 
algorithm, GCN takes a graph as an input

1500 epochs

2,6 million events

lr 5e-4
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The GCN performances 
are similar in terms of time 
consumption. 
Anyway, for 11 events, it 
does not recognize good 
hits (false negatives).
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The GCN algorithm: comparison with traditional pipeline



Beam test data
SageConv algorithm
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The SageConv trained model is saved in a pkl file.
We applied the model to beam test data.



Track fit parameters distributions
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Cosine directors distributions
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Differences between cosine directors distributions
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What happens in a high noise environment?

Accuracy:   0.9761
Recall:   0.9649  
Precision:   0.9851

SageConv algorithm:
• 4 million event, 
• 550 epochs, 
• lr =0.0001, 
• 7 GNN layer
• aggregation function=mean

Balanced and 
standardized 
dataset

Evaluating a high-noise environment can be beneficial because it often occurs that real-world data is subject to detectors aging, environment with 
high levels of charged particles, backscattering tracks… 
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Event display

23



To process 5000 tracks the 

analytical pipeline takes 

102 min, the AI pipeline 

takes 240 ms!

The SageConv algorithm: comparison with traditional pipeline
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Conclusions and next steps
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We applied the graph neural network to develop an AI tracking algorithm to reconstruct particle 

trajectories for a space experiment toy model.

The preliminary results show an improvement with respect to the traditional pipeline, in particular, in terms 

of time consuming. 

Currently, we are working on a new set of simulated data from the HERD detector, which is part of an 

actual space experiment.

Specifically, we are studying the HERD software to accurately analyze the simulation data before applying 

the tracking AI algorithm. 

The final step will involve applying the graph neural network, as done previously, to create an AI-driven 

tracking algorithm. 

This process ensures that our algorithm is robust and capable of handling real-world experimental data.



Thank 
you
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Backup



Zirettino

The Zirè experiment is part of the NUSES (NeUtrino and Seismic Electromagnetic Signals) space mission, proposed by the Gran Sasso 
Science Institute (GSSI) in collaboration with the Istituto Nazionale di Fisica Nucleare (INFN) and by Thales Alenia Space Italy (TAS-I), 
involving many Institutes and Universities from Europe and abroad. Zirè will perform measurements of electrons, protons and light nuclei 
from few up to hundreds of MeVs, for the study of low energy CRs, space weather phenomena and possible Magnetosphere-Litosphere-
Ionosphere Coupling (MILC) signals. A further goal of the experiment is to test new tools for the detection of photons in the energy range 0.1 
MeV - 50 MeV, allowing the investigation of transient phenomena and steady gamma sources.
[The Zirè experiment on board the NUSES space mission, 38th International Cosmic Ray Conference, R. Aloisio, et al.,
https://doi.org/10.22323/1.444.0139 ].
Zirettino is the prototype of Zirè with 1 X-Y modules (FTK), a PST which consists of scintillating bars and a pixelated calorimeter.
Each module of the FTK is equipped with two planes (views) of fibers oriented along two orthogonal directions (X-view and Y-view). 
Each view consists of two staggered layers (ribbons) of round scintillating fibersThe width of each layer is about 3.25 cm, to match the 
size of the SiPM array. Fibers of different diameters, i.e. 500 𝜇𝜇𝑚𝑚 and 750 𝜇𝜇𝑚𝑚, have been used configurations with different read-out 
pitches for the SiPM strips.
[The light tracker based on scintillating fibers with SiPM readout of the Zire instrument on board the NUSES space mission, Mazziotta, Mario 
Nicola and Pillera, Roberta, https://pos.sissa.it/444/083].
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https://doi.org/10.22323/1.444.0139
https://pos.sissa.it/444/083


• Scintillation light isotopically produced  in the scintillator crystal
• Fibers subtended by the acceptance cone corresponding to the total internal 

reflection angle collect the light to photodetectors
• Crossed fiber planes allow to centroid the interaction point in the scintillator 

crystal

WLS+LYSO CRYSTAL: Imaging calorimeter
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Graph convolutional neural network
In traditional neural networks, linear layers apply a linear transformation to the incoming data.
this transformation converts input features x into hidden vectors h through the use of a weight matrix 𝐖𝐖.
Ignoring biases for the time being, this can be expressed as:

With graph data, an additional layer of complexity is added through the connections between nodes.
These connections matter because, typically, in networks, it’s assumed that similar nodes are more likely to be linked to each other than dissimilar ones, a 
phenomenon known as network homophily.
We can enrich our node representation by merging its features with those of its neighbors.
This operation is called convolution, or neighborhood aggregation. Let’s represent the neighborhood of node i including itself as Ñ.

Unlike filters in Convolutional Neural Networks (CNNs), our weight matrix 𝐖𝐖 is unique and shared among every node. But there is another issue: nodes do 
not have a fixed number of neighbors like pixels do.
How do we address cases where one node has only one neighbor, and another has 500? If we simply sum the feature vectors, the resulting 
embedding h would be much larger for the node with 500 neighbors. To ensure a similar range of values for all nodes and comparability between them, we 
can normalize the result based on the degree of nodes, where degree refers to the number of connections a node has.

https://en.wikipedia.org/wiki/Network_homophily


32

Introduced by Kipf et al. (2016), the graph convolutional layer has one final improvement.
The authors observed that features from nodes with numerous neighbors propagate much more easily than those from more isolated nodes.
To offset this effect, they suggested assigning bigger weights to features from nodes with fewer neighbors, thus balancing the influence across all nodes. 
This operation is written as:

https://arxiv.org/abs/1609.02907
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Hamilton et al. introduced GraphSAGE in 2017 as a framework for inductive representation learning on large graphs (with over 100,000 nodes). This is in 
contrast with the previous graph machine learning methods like Graph Convolutional Networks or DeepWalk which are inherently transductive i.e they can 
only generate embeddings for the nodes present in the fixed graph during the training.
Its goal is to generate node embeddings for downstream tasks, such as node classification.
the GraphSage algorithm exploits both the rich node features and the topological structure of each node’s neighborhood simultaneously to efficiently 
generate representations for new nodes without retraining.

GraphSAGE

Two main components of GraphSAGE:
• Neighbor sampling
• Aggregation
Neighbor sampling
Instead of adding every neighbor in the computation graph, we sample a predefined number of them. For instance, we choose only to keep (at most) 
three
neighbors during the first hop and five neighbors during the second hop.

Aggregation
Now that we’ve seen how to select the neighboring nodes, we still need to compute embeddings. This is performed by the aggregation operator (or 
aggregator). In GraphSAGE, the authors have proposed
three solutions:
• mean aggregator
• long short-term memory (LSTM) aggregator
• pooling aggregator

https://arxiv.org/abs/1609.02907
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SageConv is an improvement over GraphSAGE in that it uses a more expressive convolutional operator, which allows it to capture more complex features.
The key difference between SageConv and GraphSAGE is in the aggregation function used.
The SageConv aggregation function takes into account the degrees of the nodes in the neighborhood. SageConv, unlike GraphSAGE, uses the average of 
the representations of the neighbors, normalized by the degree of each neighbor, as the aggregate representation.
This allows it to capture more fine-grained information about the structure of the graph.
It also uses skip connections to facilitate gradient flow during training. Specifically, the output of each layer is combined with the input representation of 
the node. The concatenated vector is then passed through a fully connected layer to produce the final output of the layer.

Advantages of SageConv
SageConv has several advantages over other GNN architectures. Firstly, the use of the degree-normalized aggregation function allows SageConv to capture 
more fine-grained information about the local neighborhood of each node, which can be particularly useful in tasks such as link prediction and graph 
classification.

Secondly, the skip connections used in SageConv help to alleviate the problem of vanishing gradients that can occur in deep neural networks. By preserving 
the information from previous layers, skip connections facilitate gradient flow and allow the model to learn more effectively.

Finally, SageConv is computationally efficient, as it does not require any expensive matrix inversion typically required in other GNN architectures.

SageConv
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Graph Attention Networks (GATs) are a variant of Graph Neural Networks (GNNs) that leverage attention mechanisms for feature learning on graphs. 

Introduced by Veličković et al. in 2018, GATs offer a more nuanced approach to aggregating neighborhood information compared to traditional GNNs.

In standard GNNs, such as Graph Convolutional Networks (GCNs), the feature update of a node is typically the average of the features of its neighbors. This 

approach does not differentiate between the contributions of different neighbors.

GATs, on the other hand, assign an attention coefficient to each neighbor, indicating the importance of that neighbor’s features for the feature update of 

the node. These coefficients are computed using a shared self-attention mechanism, which calculates an attention score for each pair of nodes. The scores 

are then normalized across each node’s neighborhood using a SoftMax function.

The attention-based approach allows GATs to assign different weights to different neighbors, providing a more flexible and potentially more expressive 

model. It also offers a level of interpretability, as the attention coefficients can be seen as indicating the importance of each neighbor.

GAT

https://arxiv.org/abs/1710.10903


Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

GCN algorithm
The general idea of GCN is to apply convolution over a graph. Instead of having a 2-D array as input as in the classical CNN algorithm, 
GCN takes a graph as an input

Algorithm performances:
1500 epochs
2 million events
lr 5e-4
Accuracy: 0,8662 
Recall: 0,8326
Precision: 0,9663
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Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

The GCN algorithm: comparison with traditional pipeline

The GCN performances are similar in terms of time consumption to the 
SageConv ones. 
Anyway, for 11 events out of 5000, it does not recognize good hits (false 
negatives).
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