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Overview
In this study, we introduce our efforts to develop an AI algorithm dedicated to classify electromagnetic and hadronic 
showers.

• MonteCarlo simulation

• The AI used techniques

• First preliminary results



MonteCarlo Simulations
First, it was necessary to develop a toy Monte Carlo model of a spatial calorimeter to fine-tune a machine learning 
algorithm or neural network model. 

The initial simulation provided only a single layer of pixels along the z-axis, where the pixel's z-dimension corresponded 
to the z-dimension of the calorimeter.  At that stage, adding additional layers of pixels was not feasible. 

However, we have since overcome this limitation and can now modify the number of layers in each dimension and 
reconstruct events accordingly.

In this preliminary study the simulation was conducted using monoenergetic primary particles propagated in a linear 
fashion.



MonteCarlo Simulations
Electrons vs protons of 20 GeV
The current configuration consists of a cubic layered calorimeter composed of 25 layers of LYSO, each measuring 3 cm 
on each side, resulting in a total length of 75 cm per side.

 

Electron event Proton event



Chosen parameters for the AI model

• For the machine learning model, we identified the following parameters:

• R1: Ratio of energy deposited in the last layer to the total energy deposited in the calorimeter.

• R2: Ratio of the maximum energy deposited, in a layer, to the total energy deposited in the calorimeter.

• R3: Ratio of energy released in each layer to the total energy deposited in the calorimeter (25 parameters in total).

• R4: Containment radius, the radius within which 90% of the deposited energy is contained in each layer

• R5: Z-coordinate of the last hit layer.

• R6: Z-coordinate of the maximum energy deposited.



Parameters distributions – R1(Ratio of energy deposited 
in the last layer to the total energy deposited )
Electrons vs protons at 20 GeV



Parameters distributions – R2(maximum energy 
deposited, in a layer, to the total energy deposited )
Electrons vs protons at 20 GeV



Parameters distributions –R3(Ratio of energy released 
in each layer to the total energy deposited )
Electrons vs protons at 20 GeV

As we move deeper into the different layers, the energy 
deposition of electrons decreases, while that of protons 
continues to be significant



Parameters distributions – R4(containment radius)
Electrons vs protons at 20 GeV
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Parameters distributions – R5(Z of the last hit layer)
Electrons vs protons at 20 GeV
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Parameters distributions – R6(Z of the maximum 
energy deposited)
Electrons vs protons at 20 GeV
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AI Techniques 
Applied



Correlation matrix

The correlation matrix shows that the selected variables 
have minimal to no interdependence, suggesting that they 
contribute independently to the analysis. 
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t-SNE
(t-distributed  stochastic neighbour embedding)

t-distributed stochastic neighbor 
embedding (t-SNE) is a statistical method 
for visualizing high-dimensional data by giving 
each datapoint a location in a two or three-
dimensional map

With a larger dataset of simulated particles, 
we can determine if the feature data can be 
divided into clusters before applying any 
machine learning algorithm.

Vertical track



t-SNE
(t-distributed  stochastic neighbour embedding)

t-distributed stochastic neighbor 
embedding (t-SNE) is a statistical method 
for visualizing high-dimensional data by giving 
each datapoint a location in a two or three-
dimensional map

With a larger dataset of simulated particles, 
we can determine if the feature data can be 
divided into clusters before applying any 
machine learning algorithm.

Inclined track



UMAP
(Uniform Manifold Approximationad Projection for 
Dimension reduction)

UMAP is a dimension reduction technique 
that can be used for visualisation similarly to 
t-SNE, but also for general non-linear 
dimension reduction.



XGBoost algorithm
•The  main  goal  of  XGBoost  is  to  find  the  best  balance  between  the complexity of the trees (how deep and 
complex they are) and the accuracy of the prediction

•XGBoost is based on decision trees, similar to random forest. The difference lies in the fact that XGB trains these 
trees one at a time. It starts with one tree and then adds more incrementally. Each new tree tries to correct the 
errors made by the previous ones.

•Weak trees have associated weights - these weights represent how skilled each tree is at solving the problem. 
XGBoost assigns a higher weight to trees that contribute more to the overall error reduction.



Training a machine learning algorithm using XGBoost 
yielded the following results:

• Accuracy XGB Classifier: 99.85%

• Recall XGB Classifier: 99,90%

• Precision XGB Classifier: 99,80%

XGBoost algorithm
Results and performance on vertical tracks



Electron event of 20 GeV, with momentum generated 
within a cone having an angular opening between -30 
and 30 degrees

XGBoost algorithm
Results and performance on inclined tracks



Train of XGBoost algorithm on a sample of 100k events

• Accuracy XGB Classifier: 99.95% 

• Recall XGB Classifier: 99.95% 

• Precision XGB Classifier: 99.94% 

XGBoost algorithm
Results and performance on inclined tracks
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XGBoost algorithm
Results and performance on inclined tracks



EXplanable 
Artificial 
Intelligence (XAI)
SHAP Analysis

 



EXplanable Artificial Intelligence (XAI)
SHAP Analysis

• SHAP stands for SHapley Additive exPlanations, is the most powerful method for explaining how 
machine learning models make predictions.

• In particular Beeswarm plots are a more complex and information-rich display of SHAP values that reveal 
not just the relative importance of features, but their actual relationships with the predicted outcome.



SHAP Analysis
Beeswarm plot

• In a beeswarm plot, for each features, every 
instance of the dataset appears as it’s own point. 
The points are distributed horizontally along x-
axis according to their SHAP value.

• Examining how the SHAP values are distributed 
reveals how a variable may influence the model’s 
predictions.

• Color is used to display the original value of a 
feature.



SHAP Analysis
Bar plot

• The simplest starting point for global interpretation with 
SHAP is to examine the mean absolute SHAP value for 
each feature across all of the data that quantifies, on 
average, the magnitude of each feature's contribution

• Features with higher mean absolute SHAP values are more 
influential.



SHAP Analysis on inclined tracks



Next steps and possible new 
scenarios

• Evaluation of the XGBoost classifier on particle datasets with energy distributions that follow a power spectrum.

• Now we will work on a new dataset from the HERD detector simulation. In this initial phase, we are carefully 
studying the simulation's output before applying any AI algorithm

• Explore the potential of training Convolutional Neural Networks (CNNs) with GPU acceleration to enhance 
computational efficiency.

• Investigate alternative machine learning paradigms, including reinforcement learning and unsupervised learning, to 
broaden the scope of model development.

• Test and validate deep learning models based on transformer architectures for their applicability in the context of 
particle energy distribution analysis.



Thank you



Backup



Parameters distributions – R1(Ratio of energy deposited 
in the last layer to the total energy deposited )
Electrons vs protons at 20 GeV inclined



Parameters distributions – R2(maximum energy 
deposited, in a layer, to the total energy deposited )
Electrons vs protons at 20 GeV inclined



Parameters distributions – R4(containment radius)
Electrons vs protons at 20 GeV inclined



Parameters distributions – R5(Z of the last hit layer)
Electrons vs protons at 20 GeV inclined



Parameters distributions – R6(Z of the maximum 
energy deposited)
Electrons vs protons at 20 GeV inclined


