Evaluating Summary Statistics with Mutual Information for Cosmological Inference

眭策 Ce Sui

In collaboration with

Xiaosheng Zhao, Tao Jing, Yi Mao

Tsinghua University

Statistical Inference in Cosmology

How to select optimal statistics ?

How to select optimal statistics ?

- 1. Through theoretic interpretation
- 2. Fisher Analysis

3. Running inferences with one mock observation

Method: Mutual information as a probe of Sufficient Statistics

Mutual information

$$I(\theta; x) = \mathbf{D}_{\mathbf{KL}}[p(\theta, x) || p(\theta) p(x)] = E_{p(\theta, x)} \left[\log \frac{p(\theta, x)}{p(\theta) p(x)} \right]$$

MI is a fundamental measure of Statistical Dependence

It evaluates how much uncertainty is reduced

Method: Mutual information as a probe of Sufficient Statistics

Mutual information
$$I(\theta; x) = D_{KL}[p(\theta, x)||p(\theta)p(x)] = E_{p(\theta, x)}\left[\log \frac{p(\theta, x)}{p(\theta)p(x)}\right]$$

Why mutual information? Sufficient Statistics $\longleftrightarrow P(\theta|x,s) = P(\theta|s) \iff I(\theta;s) = I(\theta;x)$

MI reflects "proximity" to sufficiency

Method: Mutual information as a probe of Sufficient Statistics

Mutual information
$$I(\theta; x) = D_{KL}[p(\theta, x)||p(\theta)p(x)] = E_{p(\theta, x)}\left[\log \frac{p(\theta, x)}{p(\theta)p(x)}\right]$$

Why mutual information? Sufficient Statistics $\longleftrightarrow P(\theta|x,s) = P(\theta|s) \iff I(\theta;s) = I(\theta;x)$

How to estimate mutual information?

$$I(\theta; x) \equiv E_{p(\theta, x)} \left[\log \frac{p(\theta | x)}{p(\theta)} \right] \approx E_{p(\theta, x)} \left[\log \frac{q(\theta | x)}{p(\theta)} \right]$$

Variational Lower Bound

Summary Statistics Considered in this work

Power Spectrum $\langle \delta(k)\delta(k')\rangle = (2\pi)^3 \delta^D(k+k')P(k)$

Bipectrum $\langle \delta(k_1)\delta(k_2)\delta(k_3)\rangle = (2\pi)^3 \delta^D(k_1 + k_2 + k_3)B(k_1, k_2, k_3)$

Scattering Transform

$$S\delta[\lambda_1, \dots, \lambda_k] = \left| \psi_{\lambda_k} \star \cdots |\psi_1 \star \delta| \right|$$

Use designed wavelets to convolve the field (Anden & Mallat 2014, Eickenberg et al. 2017,2018)

Experiments I:

Validate the method in CMB-like Gaussian random fields(GRF)

Experiments I:

Validate the method in CMB-like Gaussian random fields(GRF)

Results are consistent with theoretical interpretations

Experiments II: Evaluate Statistics in an EoR inference Task

Experiments: MI-based comparison of statistics in an EoR Inference task

ST: Wavelet Transform **PS:** Power spectrum **BS:** Bispectrum

Mutual Information for evaluating Complementary Summary

Mutual Information for evaluating Complementary Summary

Conditional Mutual Information:

 $I(\theta; S^*|S)$

Mutual Information for evaluating Complementary Summary

CMB Experiment

15

Mutual Information for Learning Summaries

1. Learn a new optimal summary by maximizing mutual information

 $\max_{S} I(\theta; S(x))$

Mutual Information for Learning Summaries

2. Learn a complementary summary by maximizing conditional mutual information

 $\max_{S} I(\theta; S^*(x) | S)$

2. Learn a complementary summary by maximizing conditional mutual information

Learn two complementary features for Power Spectrum

Experiment:

Infer Reionization Parameter from 21cm images.

18

2. Learn a complementary summary by maximizing conditional mutual information

The learned representations are indeed complementary to power spectrum

Summary

More Details:

Previous conference paper: https://arxiv.org/abs/2307.04994 Codes and experiments: <u>https://github.com/suicee/MI4StatsEval</u> Journal Paper in prep