

Application of Physics-Informed Neural Networks to Neutron Star Magnetospheres

International Conference on Machine Learning for Astrophysics

Petros Stefanou

Co-authors: Jorge Urbán Jose Pons

July 2024

<image>

Universitat

Table of Contents

- ► Introduction
- Motivation
- Optimisation method
- ► Application to neutron star magnetospheres
- ► Summary

Table of Contents

Introduction

▶ Motivation

Optimisation method

► Application to neutron star magnetospheres

► Summary

Physics-informed neural networks

Physics-informed neural networks

Basics

- Solve PDEs using neural networks
- Input: coordinates in some domain
- Output: an approximate solution
- Loss: the residuals of the PDE describing the system
- Training set: Large number of random points
- Boundary conditions imposed through hard-enforcement

Figure 1: A physics-informed neural network

Optimisation process 1 Introduction

Optimisation process 1 Introduction

Correction step

$$egin{aligned} egin{aligned} egi$$

Line search methods

- Trainable parameters Θ
- Loss function ${\mathcal J}$
- $oldsymbol{\Theta}$ are adjusted so that $\mathcal{J}(oldsymbol{\Theta})
 ightarrow 0$
- α_k determines the step size
- p_k determines the direction

Table of Contents 2 Motivation

► Introduction

Motivation

- ▶ Optimisation method
- ► Application to neutron star magnetospheres
- ► Summary

Improve convergence 2 Motivation

Improve convergence

PINNs vs. classical methods

- Precision
- Efficiency

Improve convergence ² Motivation

PINNs vs. classical methods

- Precision
- Efficiency

Ill-conditioning

- Loss function in PINNs is poorly-scaled
- Broad eigenvalue spectrum of $hess(\mathcal{J})$ close to minimum
- Condition number $\kappa = rac{\lambda_{ ext{max}}}{\lambda_{ ext{min}}} \gg 1$
- Some directions are flat
- Gradient-based methods fail miserably

Improve convergence ² Motivation

PINNs vs. classical methods

- Precision
- Efficiency

Ill-conditioning

- Loss function in PINNs is poorly-scaled
- Broad eigenvalue spectrum of $hess(\mathcal{J})$ close to minimum
- Condition number $\kappa = rac{\lambda_{ ext{max}}}{\lambda_{ ext{min}}} \gg 1$
- Some directions are flat
- Gradient-based methods fail miserably

Figure 2: Contours of a loss function

Table of Contents3 Optimisation method

► Introduction

Motivation

Optimisation method

► Application to neutron star magnetospheres

► Summary

Quasi-Newton methods

3 Optimisation method

Quasi-Newton methods

Broyden class

$$H_{k+1} = rac{1}{ au_k} \left[H_k - rac{H_k oldsymbol{\gamma}_k \otimes H_k oldsymbol{\gamma}_k}{oldsymbol{\gamma}_k \cdot H_k oldsymbol{\gamma}_k} + \phi_k oldsymbol{
u}_k \otimes oldsymbol{
u}_k
ight] + rac{oldsymbol{s}_k \otimes oldsymbol{s}_k}{oldsymbol{\gamma}_k \cdot oldsymbol{s}_k}$$

- H_k approximates the inverse Hessian of the loss
- Depends on ${f \Theta}_k$ and $abla {\cal J}({f \Theta}_k)$
- $au_k = 1, \phi_k = 1$ define the BFGS optimizer
- Different τ_k, ϕ_k define different methods

Curvature information

- *H_k* is associated with curvature
- Step direction points towards minimum
- Less iterations to converge

Curvature information

- *H_k* is associated with curvature
- Step direction points towards minimum
- Less iterations to converge

Preconditioning

- Define new variables $oldsymbol{z}=H_k^{-1/2}oldsymbol{\Theta}$
- Update rule becomes

$$\mathbf{z}_{k+1} = \mathbf{z}_k - \alpha_k \nabla \mathcal{J}(\mathbf{z}_k)$$

• Hessian matrix in **z**-space

 $\operatorname{hess}\left(\mathcal{J}\left(\mathbf{z}\right)\right)=H_{k}^{1/2}\operatorname{hess}\left(\mathcal{J}\left(\mathbf{\Theta}\right)\right)H_{k}^{1/2}$

• Spectrum concentrated around ~ 1

Optimisation algorithm choices 3 Optimisation method

Optimisation algorithm choices 3 Optimisation method

Self-scaled BFGSSelf-scaled BFGS $\tau_k^{(1)} = \min\left\{1, \frac{\boldsymbol{\gamma}_k \cdot \boldsymbol{s}_k}{\boldsymbol{s}_k \cdot H_k^{-1} \boldsymbol{s}_k}\right\}$ $\tau_k^{(2)} = \begin{cases} \tau_k^{(1)} \\ \min\left(1 \\ 1 \\ 1 \\ 1 \end{cases}$

Self-scaled Broyden

$$\tau_{k}^{(2)} = \begin{cases} \tau_{k}^{(1)} \min\left(\sigma_{k}^{-1/(n-1)}, \frac{1}{\theta_{k}^{(1)}}\right) \text{ if } \theta_{k} > 0\\ \min\left(\tau_{k}^{(1)}\sigma_{k}^{-1/(n-1)}, \sigma_{k}\right) \text{ if } \theta_{k} \le 0\\ \phi_{k}^{(2)} = \frac{1 - \theta_{k}}{1 + a_{k}\theta_{k}} \end{cases}$$

Table of Contents

4 Application to neutron star magnetospheres

► Introduction

- ► Motivation
- ▶ Optimisation method

► Application to neutron star magnetospheres

► Summary

Neutron star magnetospheres

4 Application to neutron star magnetospheres

Neutron star magnetospheres

4 Application to neutron star magnetospheres

Figure 3: An artist's conception of a NS

Features

- Plasma flowing along the star's magnetic field
- Large scale field is dipolar
- Toroidal fields
- Force-free regime
- Non-rotating limit
- Axisymmetry

$$q^2rac{\partial}{\partial q}\left(q^2rac{\partial\mathcal{P}}{\partial q}
ight)+\left(1-\mu^2
ight)q^2rac{\partial^2\mathcal{P}}{\partial\mu^2}+\mathcal{T}rac{d\mathcal{T}}{d\mathcal{P}}=0$$

Application to neutron star magnetospheres

Application to neutron star magnetospheres

Current-free case

- $\mathcal{T}\frac{\mathcal{T}}{\mathcal{P}} = 0$
- Simple problem to check our method
- Analytical solution for comparison

Application to neutron star magnetospheres

Current-free case

- $\mathcal{T}\frac{\mathcal{T}}{\mathcal{P}} = 0$
- Simple problem to check our method
- Analytical solution for comparison

Figure 4: Loss function vs iterations

Application to neutron star magnetospheres

Current-free case

- $\mathcal{T}^{\mathcal{T}}_{\overline{\mathcal{P}}} = 0$
- Simple problem to check our method
- Analytical solution for comparison

Main points

- Quasi-Newton methods are vastly superior to gradient-based methods
- New algorithms further improve convergence compared to BFGS
- Relative error wrt analytical $\sim 10^{-7}$

Figure 4: Loss function vs iterations

Application to neutron star magnetospheres

Figure 6: Upper: SSBFGS. Lower:SSBroyden

Application to neutron star magnetospheres

Force-free case

- Multipolar content
- Non-linear source term

$$\mathcal{T}\left(\mathcal{P}
ight) = egin{cases} s\left(|\mathcal{P}|-\mathcal{P}_{c}
ight)^{\sigma} & ext{if } |\mathcal{P}| > \mathcal{P}_{c} \ 0 & ext{if } |\mathcal{P}| < \mathcal{P}_{c}, \end{cases}$$

Figure 7: A force-free solution

4 Application to neutron star magnetospheres

17/20 Figure 8: Loss function vs iterations

Figure 9: PINN error estimation

Table of Contents 5 Summary

► Introduction

- ▶ Motivation
- ▶ Optimisation method
- ► Application to neutron star magnetospheres

► Summary

- Optimisation process plays a crucial role
- Suitable choice of optimisation algorithm leads to state-of-the-art precision
- Smaller networks can be employed leading to improved efficiency
- Results extend to other problems
- Preprint for more details:
- Urbán, Jorge F., Petros Stefanou, and José A. Pons (May 2024).
 "Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?" In: *arXiv e-prints*. DOI: 10.48550/arXiv.2405.04230.

Application of Physics-Informed Neural Networks to Neutron Star Magnetospheres

Thank you