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Physics-informed neural networks1 Introduction

Basics
• Solve PDEs using neural networks
• Input: coordinates in some domain
• Output: an approximate solution
• Loss: the residuals of the PDEdescribing the system
• Training set: Large number of randompoints
• Boundary conditions imposed throughhard-enforcement Figure 1: A physics-informed neural network
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Optimisation process1 Introduction

Correction step

Θk+1 = Θk + αkpk

pk = −Hk∇J (Θk)

Line search methods
• Trainable parameters Θ
• Loss function J
• Θ are adjusted so that J (Θ) → 0

• αk determines the step size
• pk determines the direction
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Improve convergence2 Motivation

PINNs vs. classical methods
• Precision
• Efficiency

Ill-conditioning
• Loss function in PINNs is poorly-scaled
• Broad eigenvalue spectrum of hess(J )close to minimum
• Condition number κ = λmax

λmin
≫ 1

• Some directions are flat
• Gradient-based methods fail miserably Figure 2: Contours of a loss function
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Quasi-Newton methods3 Optimisation method

Broyden class

Hk+1 =
1
τk

[
Hk −

Hkyk ⊗ Hkyk

yk · Hkyk
+ ϕkvk ⊗ vk

]
+

sk ⊗ sk

yk · sk

• Hk approximates the inverse Hessian of the loss
• Depends on Θk and ∇J (Θk)

• τk = 1, ϕk = 1 define the BFGS optimizer
• Different τk, ϕk define different methods
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The role of Hk3 Optimisation method

Curvature information
• Hk is associated with curvature
• Step direction points towards minimum
• Less iterations to converge

Preconditioning

• Define new variables z = H−1/2
k Θ

• Update rule becomes
zk+1 = zk − αk∇J (zk)

• Hessian matrix in z-space
hess (J (z)) = H1/2

k hess (J (Θ))H1/2
k

• Spectrum concentrated around ∼ 1
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Optimisation algorithm choices3 Optimisation method

Self-scaled BFGS

τ
(1)
k = min

{
1,

yk · sk

sk · H−1
k sk

}
ϕ
(1)
k = 1

Self-scaled Broyden

τ
(2)
k =

τ
(1)
k min

(
σ
−1/(n−1)
k , 1

θ
(1)
k

)
if θk > 0

min
(
τ
(1)
k σ

−1/(n−1)
k , σk

)
if θk ≤ 0

ϕ
(2)
k =

1 − θk

1 + akθk
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Neutron star magnetospheres4 Application to neutron star magnetospheres

Figure 3: An artist’s conception of a NS

Features
• Plasma flowing along the star’s magneticfield
• Large scale field is dipolar
• Toroidal fields
• Force-free regime
• Non-rotating limit
• Axisymmetry

q2 ∂

∂q

(
q2∂P

∂q

)
+
(

1 − µ2) q2∂
2P
∂µ2 + T dT

dP
= 0

13/20



Neutron star magnetospheres4 Application to neutron star magnetospheres

Figure 3: An artist’s conception of a NS

Features
• Plasma flowing along the star’s magneticfield
• Large scale field is dipolar
• Toroidal fields
• Force-free regime
• Non-rotating limit
• Axisymmetry

q2 ∂

∂q

(
q2∂P

∂q

)
+
(

1 − µ2) q2∂
2P
∂µ2 + T dT

dP
= 0

13/20



Results4 Application to neutron star magnetospheres

Current-free case
• T T

P = 0

• Simple problem to check our method
• Analytical solution for comparison

Main points
• Quasi-Newton methods are vastlysuperior to gradient-based methods
• New algorithms further improveconvergence compared to BFGS
• Relative error wrt analytical ∼ 10−7 Figure 4: Loss function vs iterations
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Results4 Application to neutron star magnetospheres

Figure 5: Upper:Adam. Lower:BFGS Figure 6: Upper: SSBFGS. Lower:SSBroyden15/20



Results4 Application to neutron star magnetospheres

Force-free case
• Multipolar content
• Non-linear source term
T (P) =

{
s (|P| − Pc)

σ if |P| > Pc

0 if |P| < Pc,

Figure 7: A force-free solution
16/20



Results4 Application to neutron star magnetospheres

Figure 8: Loss function vs iterations Figure 9: PINN error estimation17/20
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Key points6 Summary
• Optimisation process plays a crucial role
• Suitable choice of optimisation algorithm leads to state-of-the-art precision
• Smaller networks can be employed leading to improved efficiency
• Results extend to other problems
• Preprint for more details:

Urbán, Jorge F., Petros Stefanou, and José A. Pons (May 2024).“Unveiling the optimization process of Physics Informed NeuralNetworks: How accurate and competitive can PINNs be?” In: arXiv
e-prints. DOI: 10.48550/arXiv.2405.04230.
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Application of Physics-Informed NeuralNetworks to Neutron Star Magnetospheres
Thank you
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