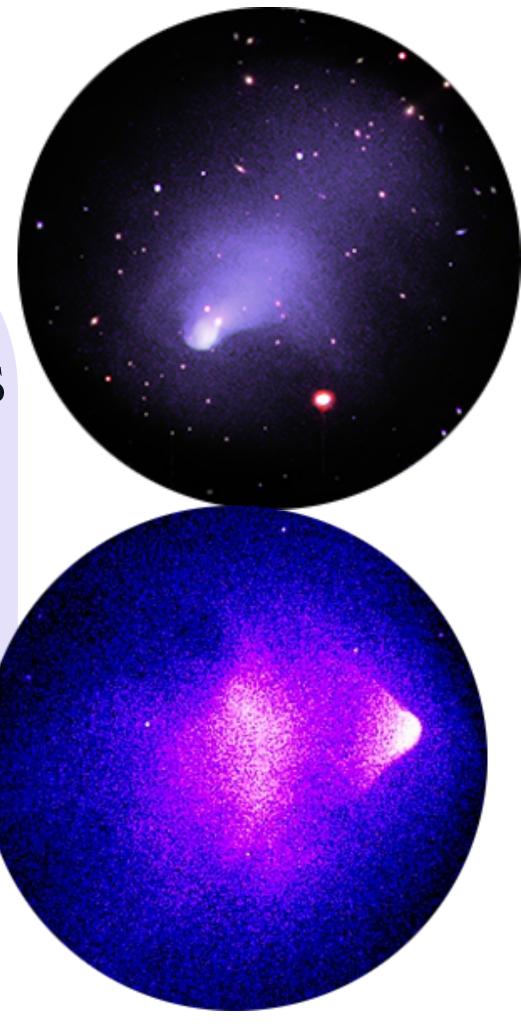
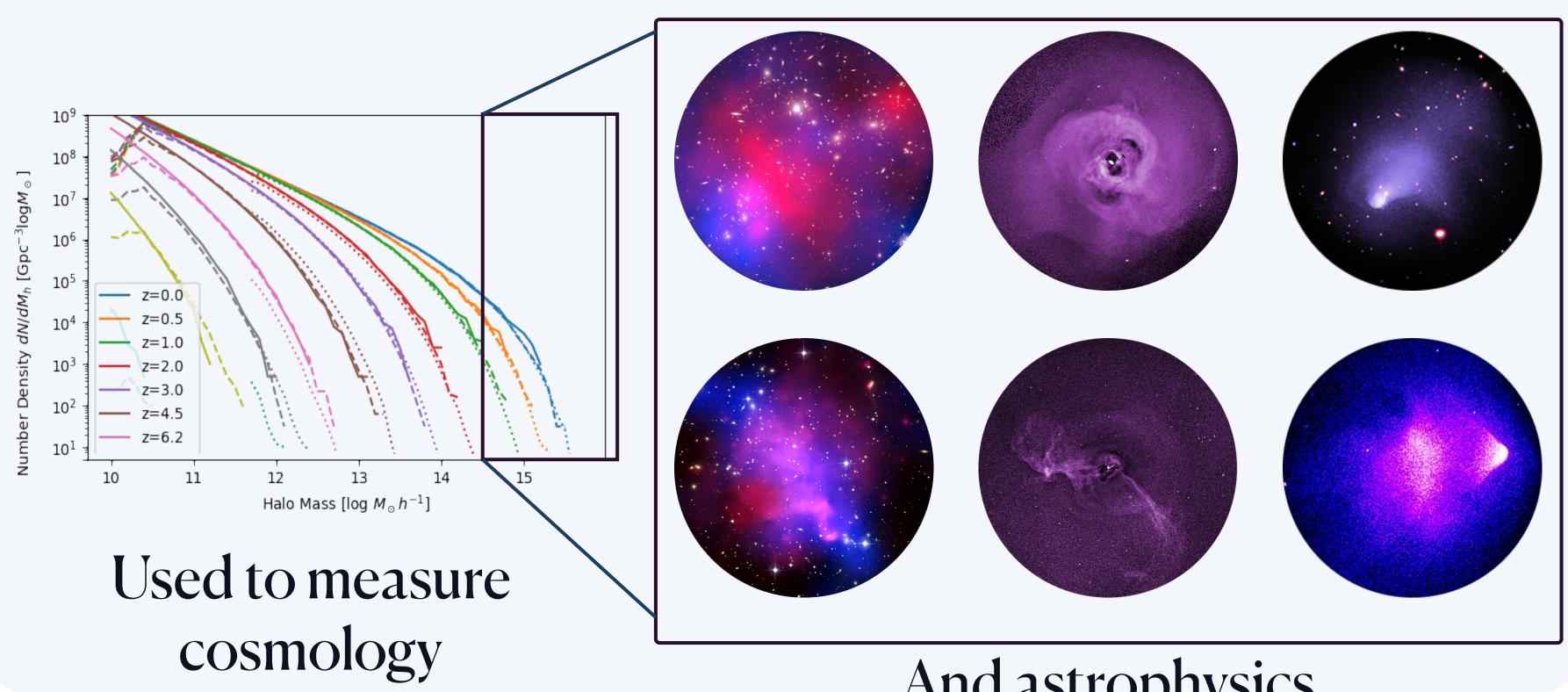


IMAGE-LEVEL INFERENCE OF COSMOLOGY & ASTROPHYSICS WITH GALAXY CLUSTERS

Urmila Chadayammuri Postdoctoral Fellow | MPIA ML4Astro II | Catania, Italy July 10, 2024



Galaxy Clusters are the biggest things at z = 0



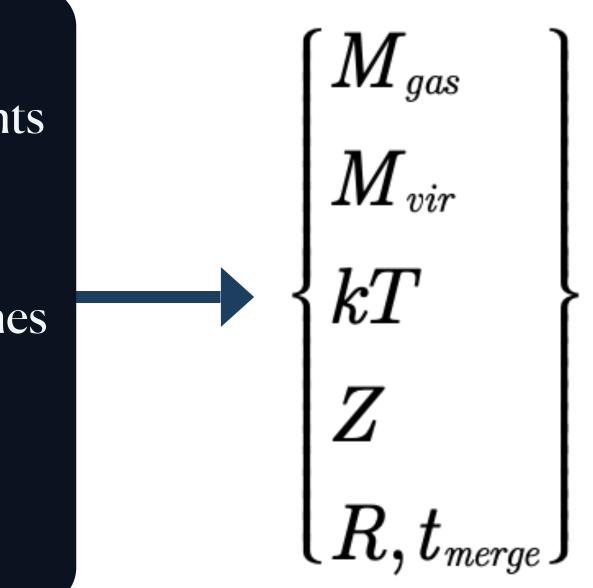
And astrophysics

But the inference pipeline is complex and degenerate

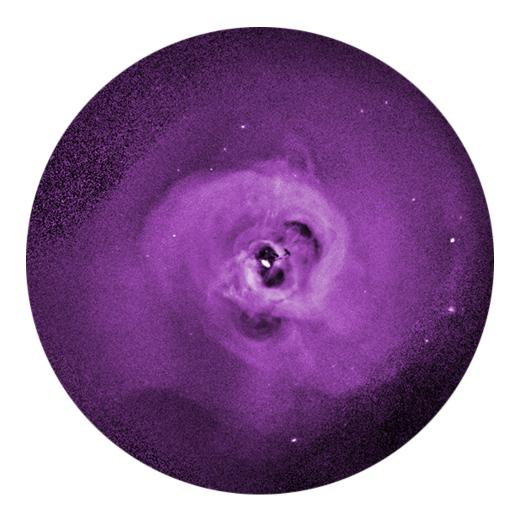


Analytic arguments (assume HSE) / Parameter searches with idealised simulations

X-ray SB, kT Y_{sz} Galaxy spectra/colours Lensing \varkappa

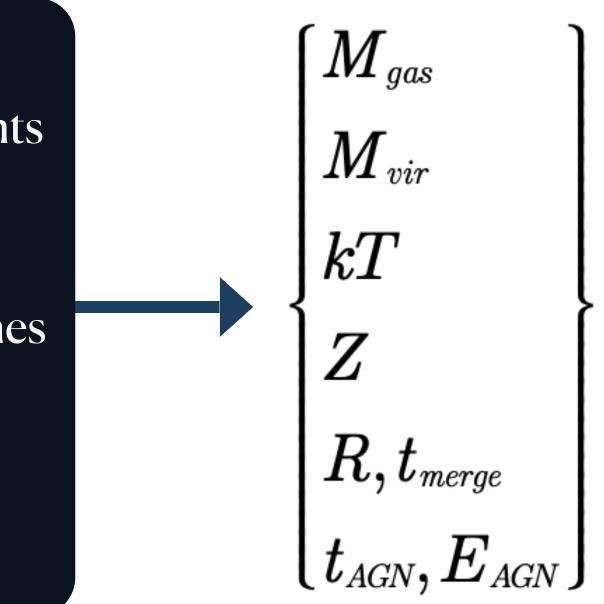


But the inference pipeline is complex and degenerate

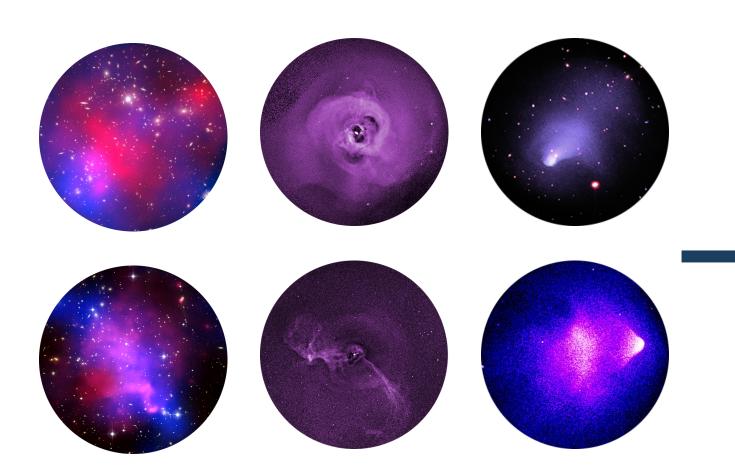


Analytic arguments (assume HSE) / Parameter searches with idealised simulations

X-ray SB, kT Y_{SZ} Galaxy spectra/colours Lensing \varkappa

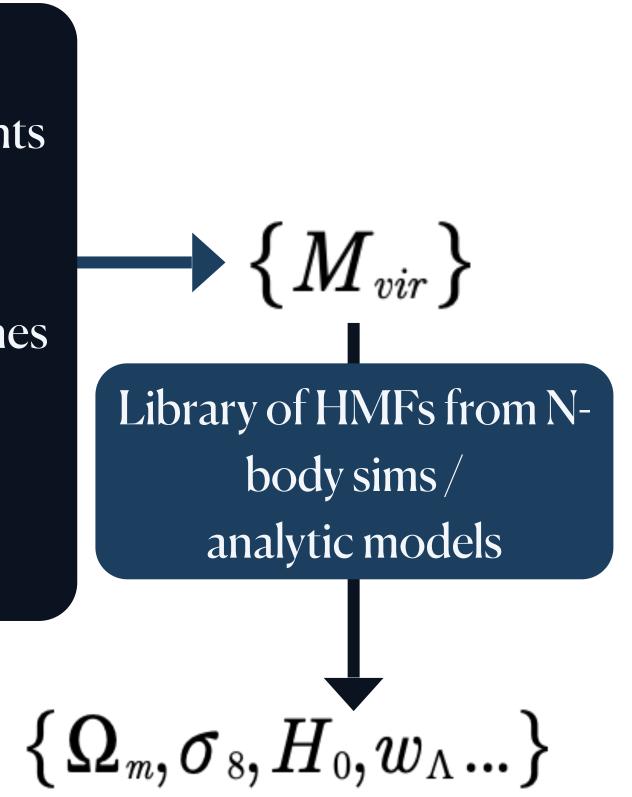


But the inference pipeline is complex and degenerate

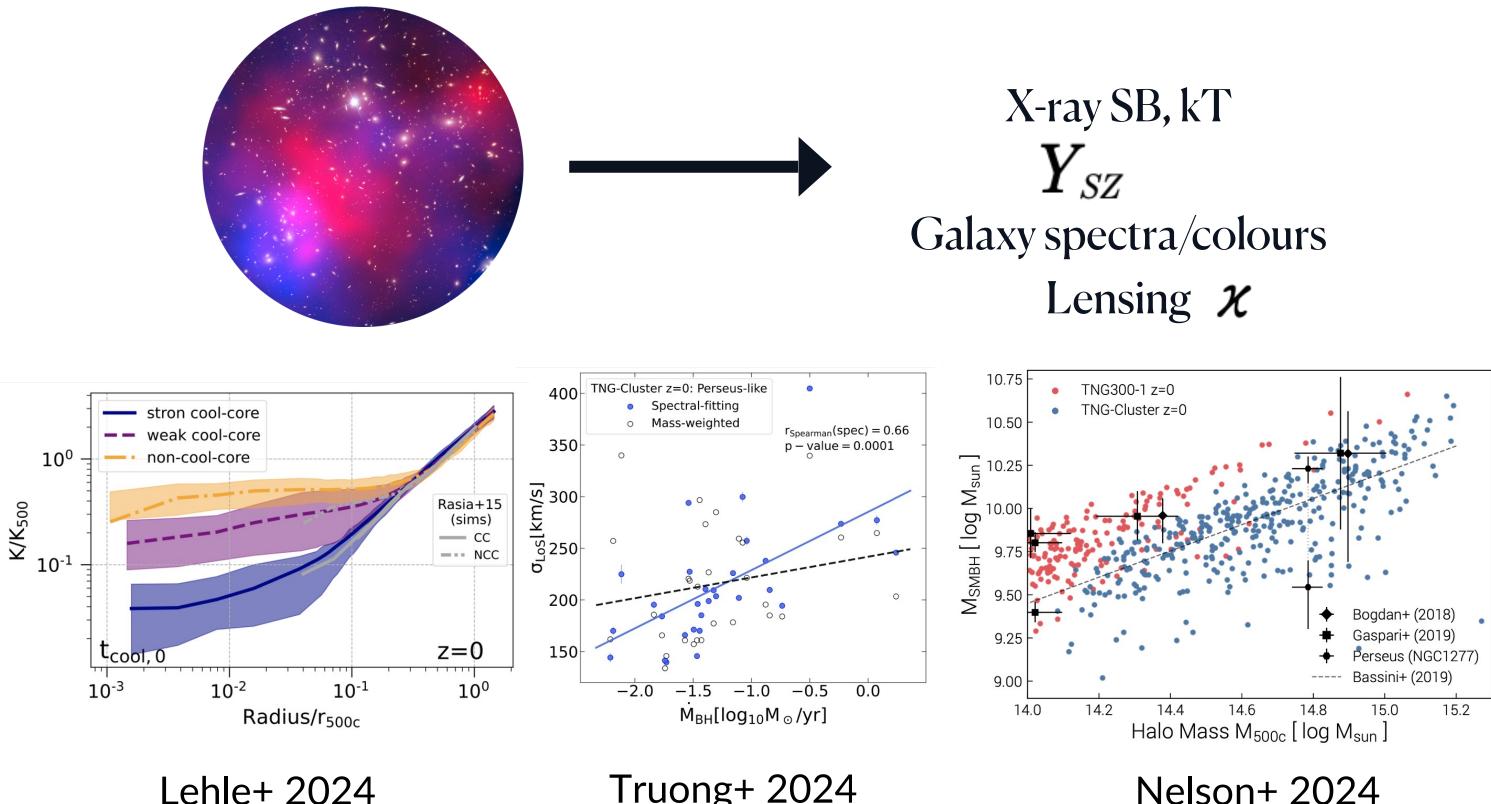


Galaxy cluster sample

Analytic arguments (assume HSE) / Parameter searches with idealised simulations



It requires us to reduce complex images to scalars or azimuthally averaged profiles

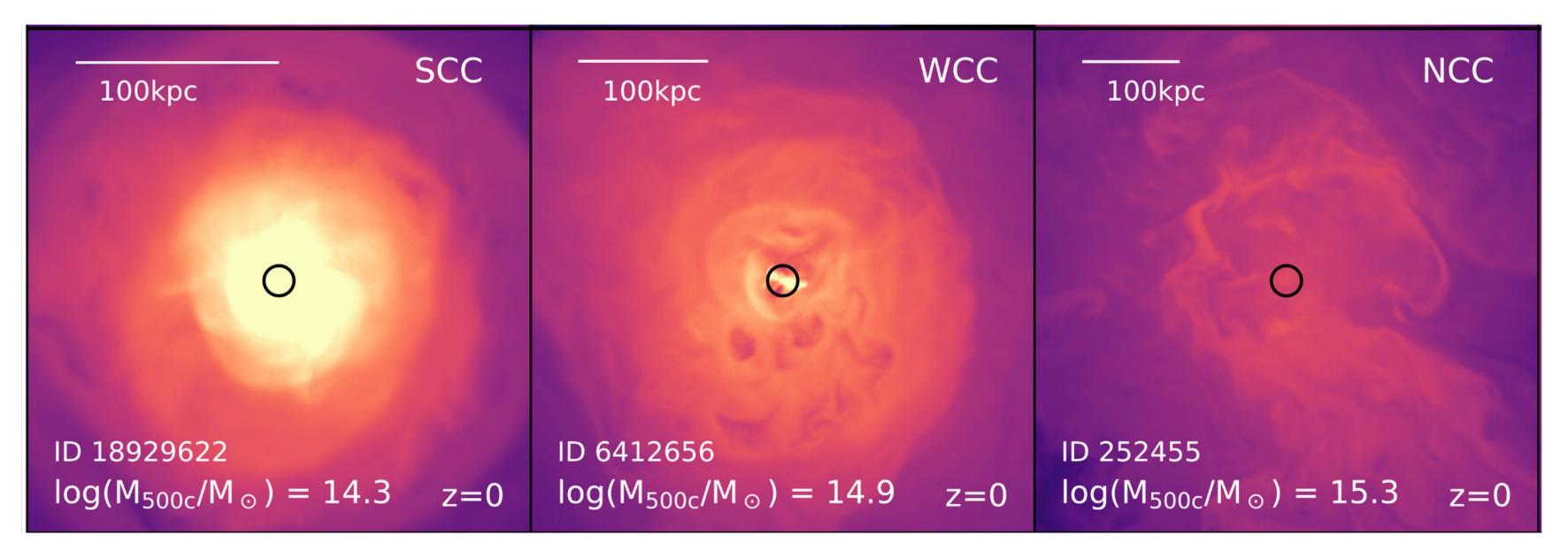


Lehle+ 2024

Truong+ 2024

When really, clusters are diverse

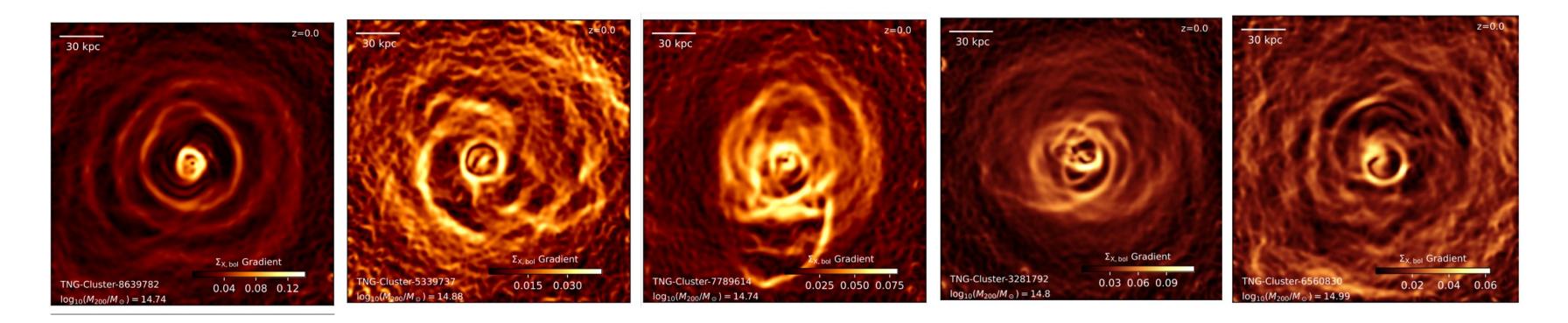
They have a wide variety of core thermodynamic profiles



Lehle+ 2024

When really, clusters are diverse

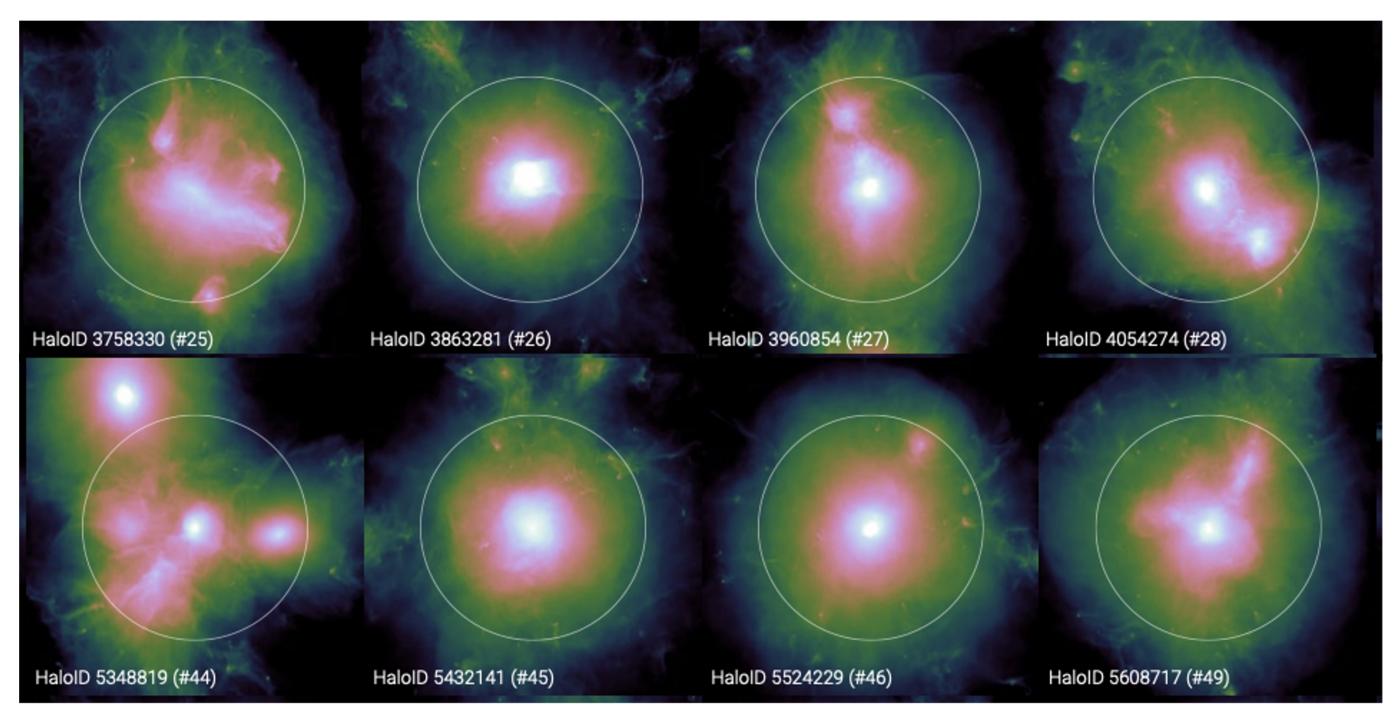
They have a wide variety of histories of AGN activity, in different phases



Truong+ 2024

When really, clusters are diverse

They can be in very different stages of assembly

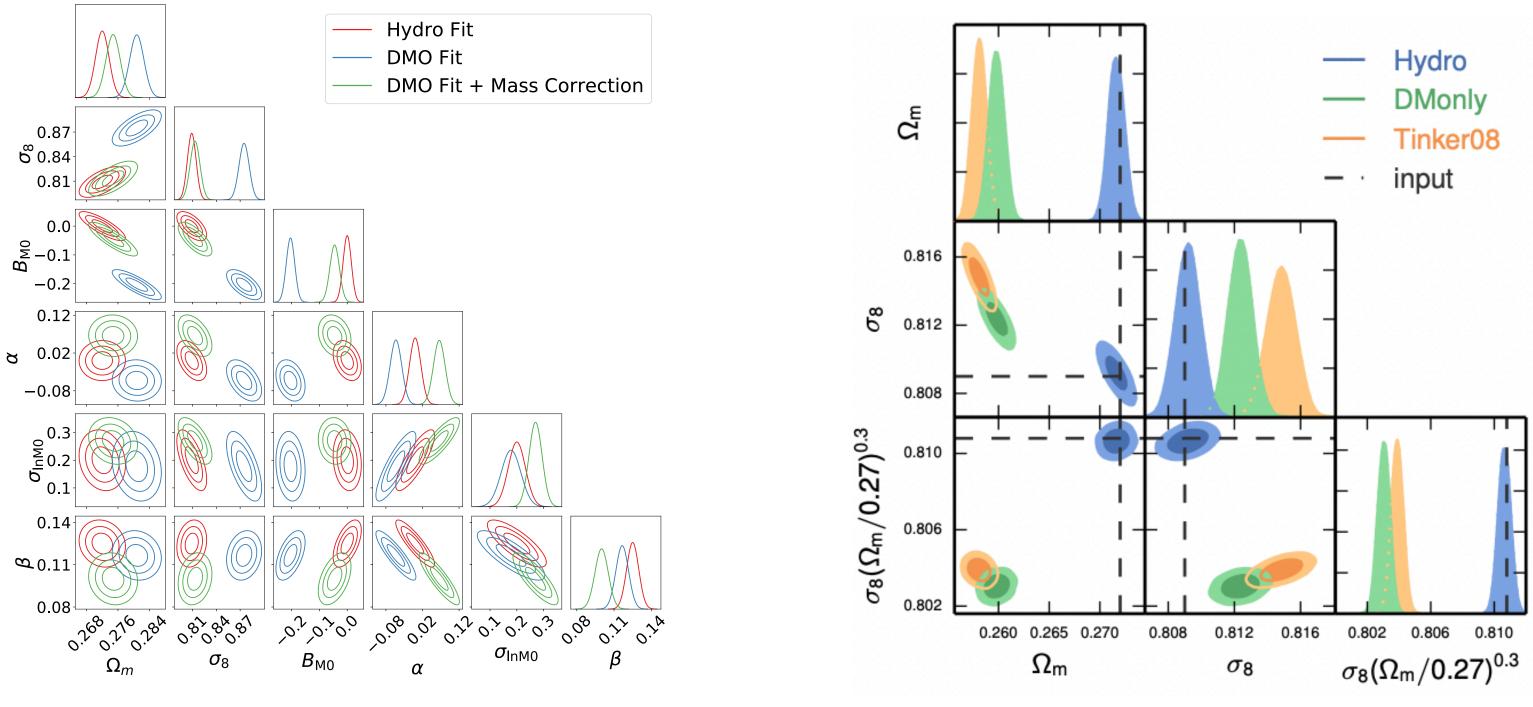


Nelson+ 2024

How can we infer cosmological and astrophysical parameters from images of the intracluster medium with minimal information loss?

1. Paint baryons onto N-body predictions

Because Halo Mass Function not identical with and without baryons

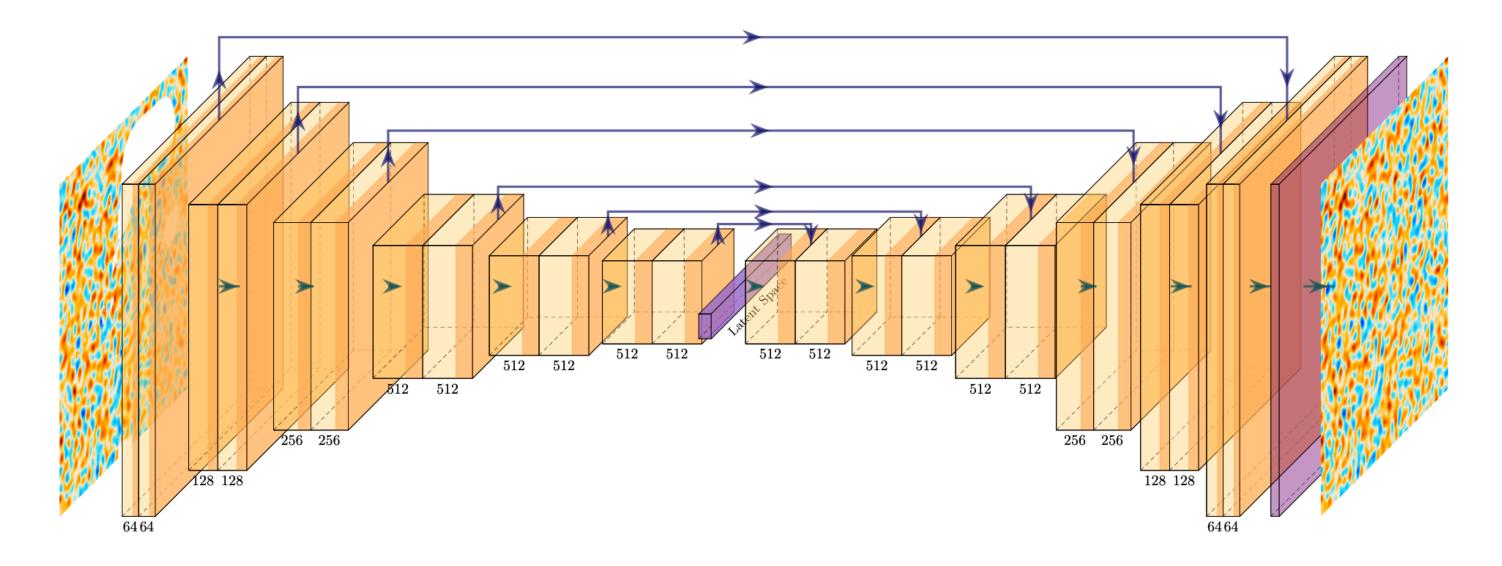


Castro+ 2021 (Euclid mocks)

Bocquet+ 2016 (eROSITA mocks)

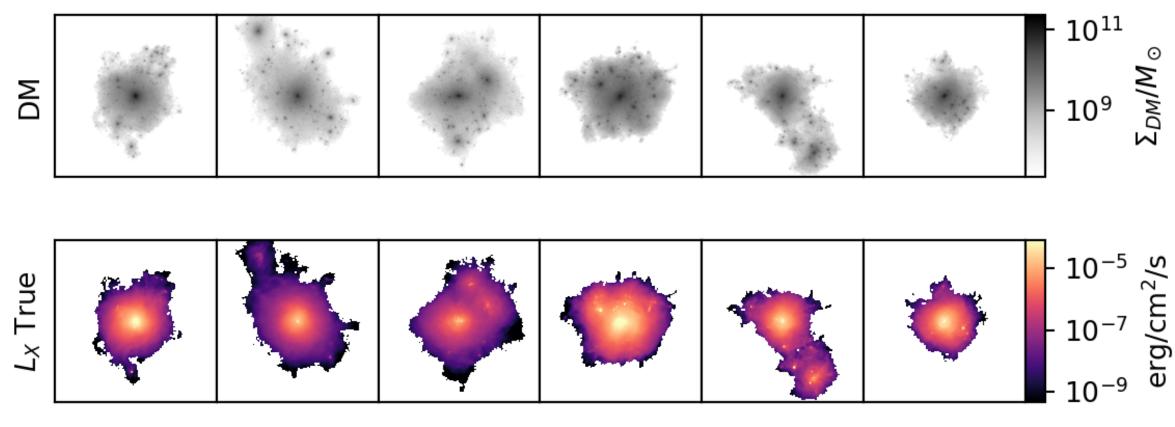
Start simple: CNNs

- Traditionally used for classification tasks: input image —> scalar output
- But can just as easily be used to go image —> image! This is in fact the "autoencoder" or "U-Net" architecture used for image colorisation, etc.



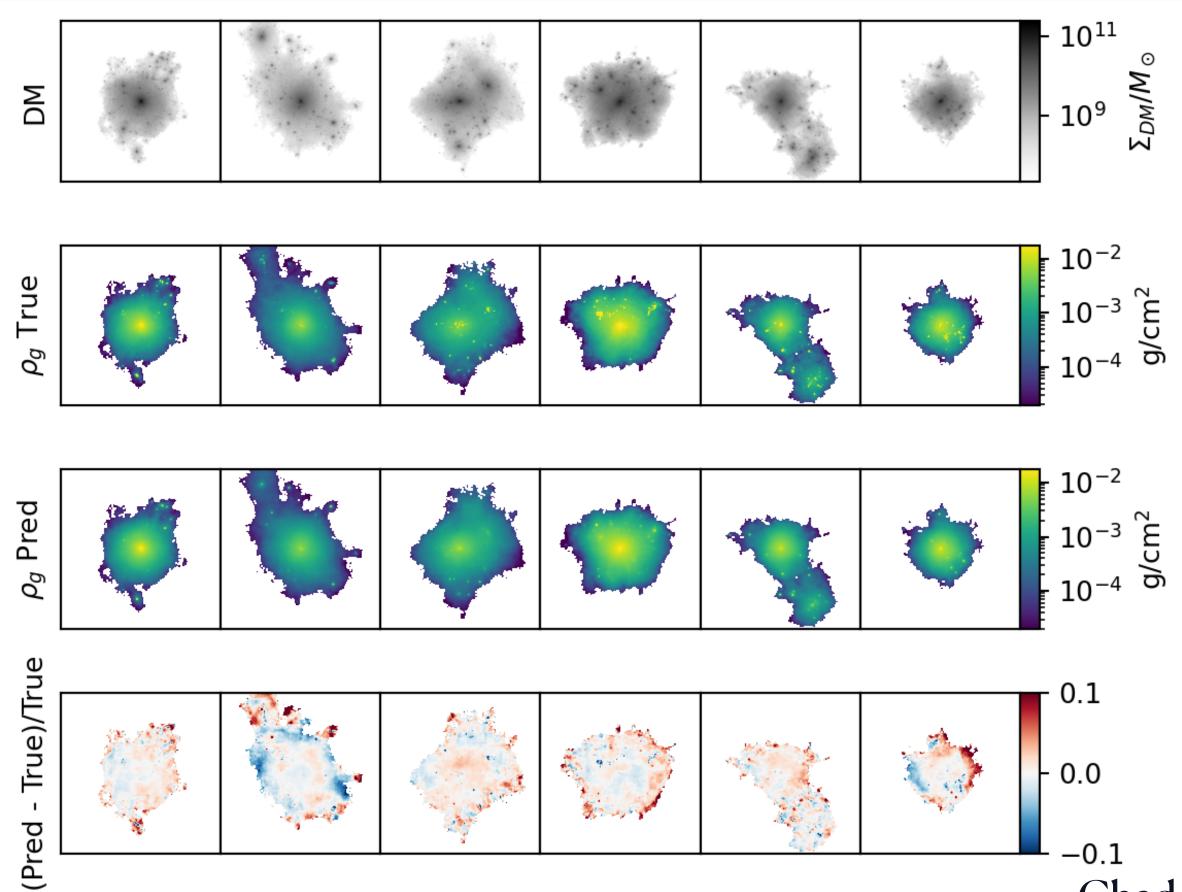
Training sample: TNG300

- Everything with $M_{FoF} > 10^{14} M_{\odot}$ in FP
- DM mass \rightarrow gas column density,
 - \rightarrow projected temperature
 - \rightarrow X-ray surface brightness



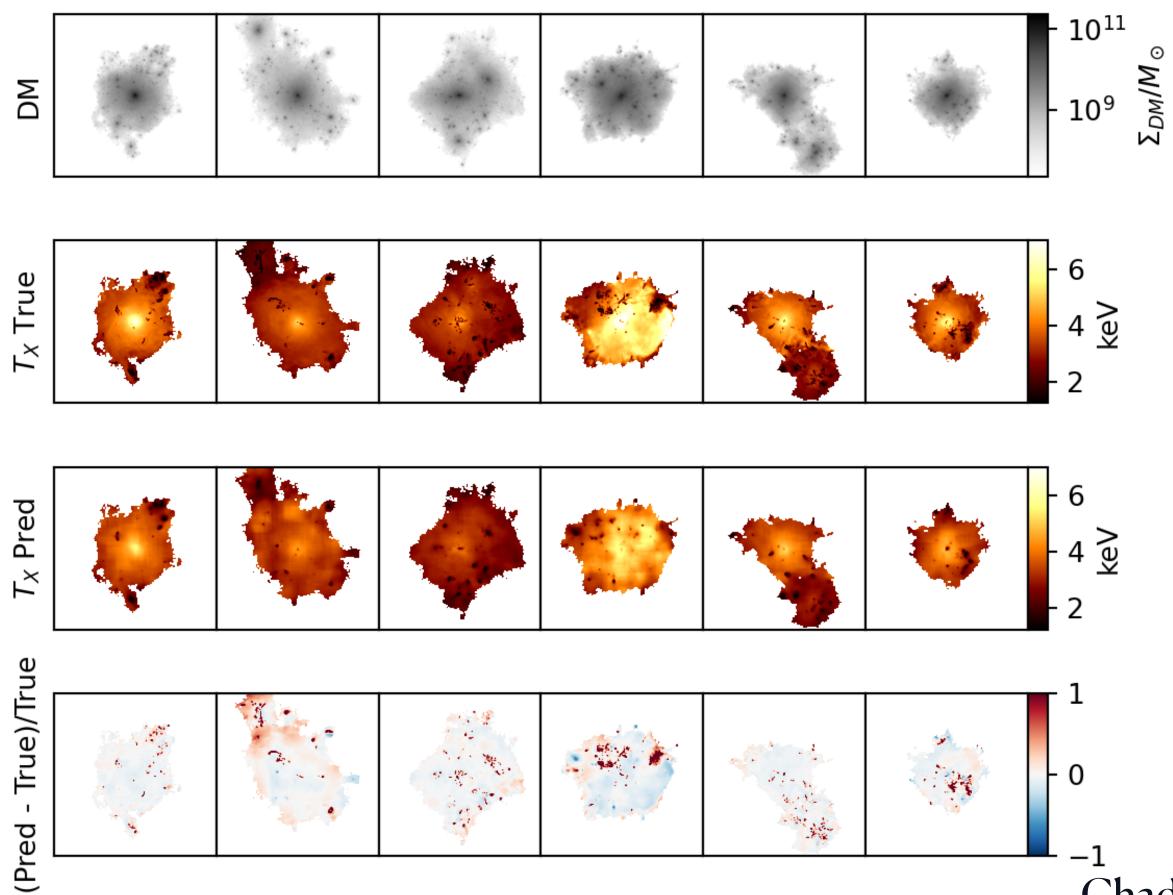
from TNG300-1 (highest resolution, fullphysics)

 $M_{DM} \rightarrow \Sigma_g$

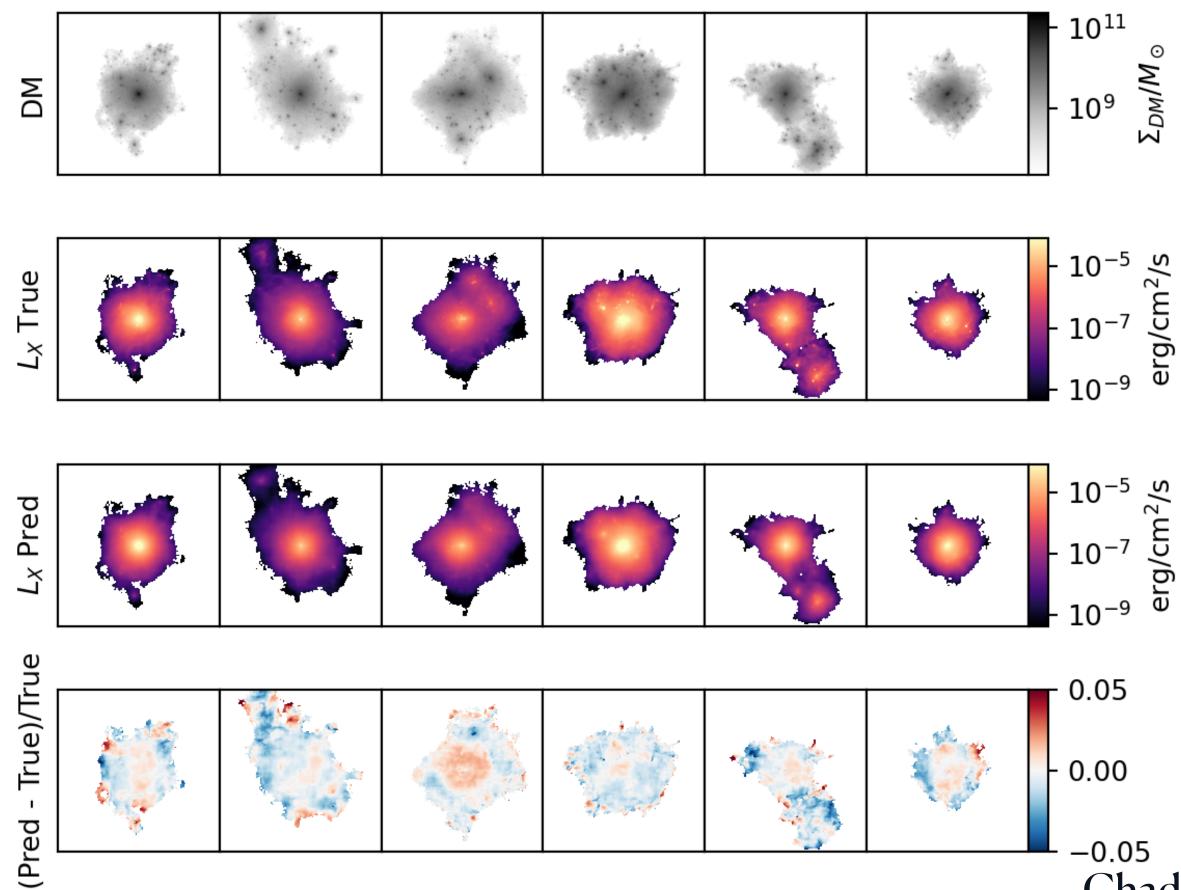


-0.1 Chadayammuri+ 2023

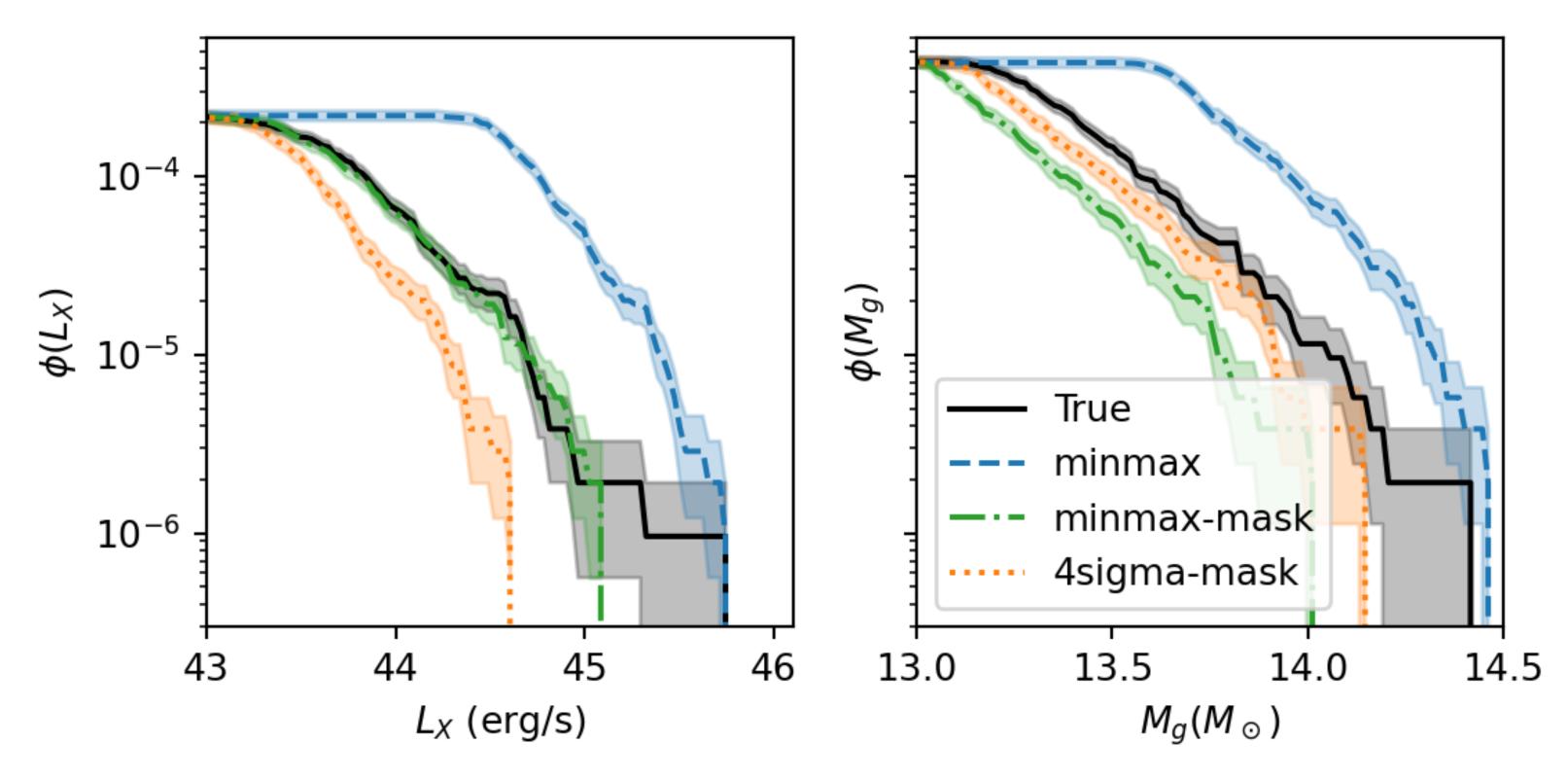
 $M_{DM} \rightarrow T_X$



 $M_{DM} \rightarrow L_X$

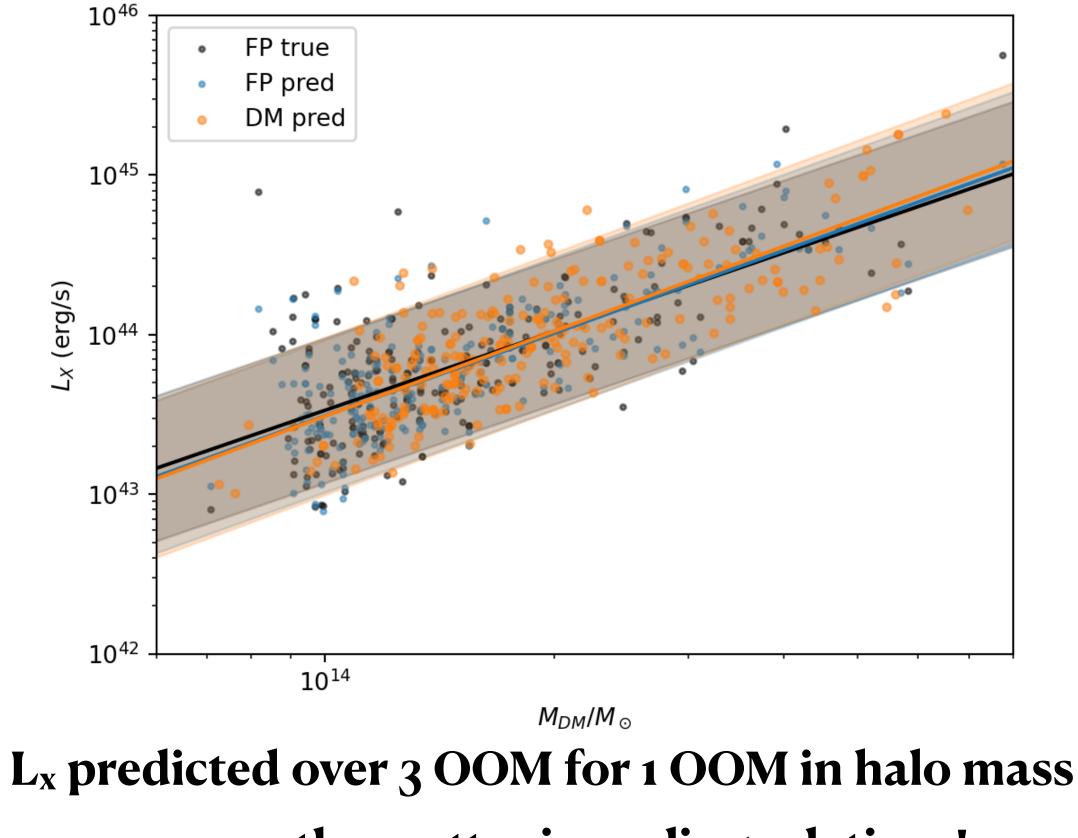


Training on image level, but population statistics recovered



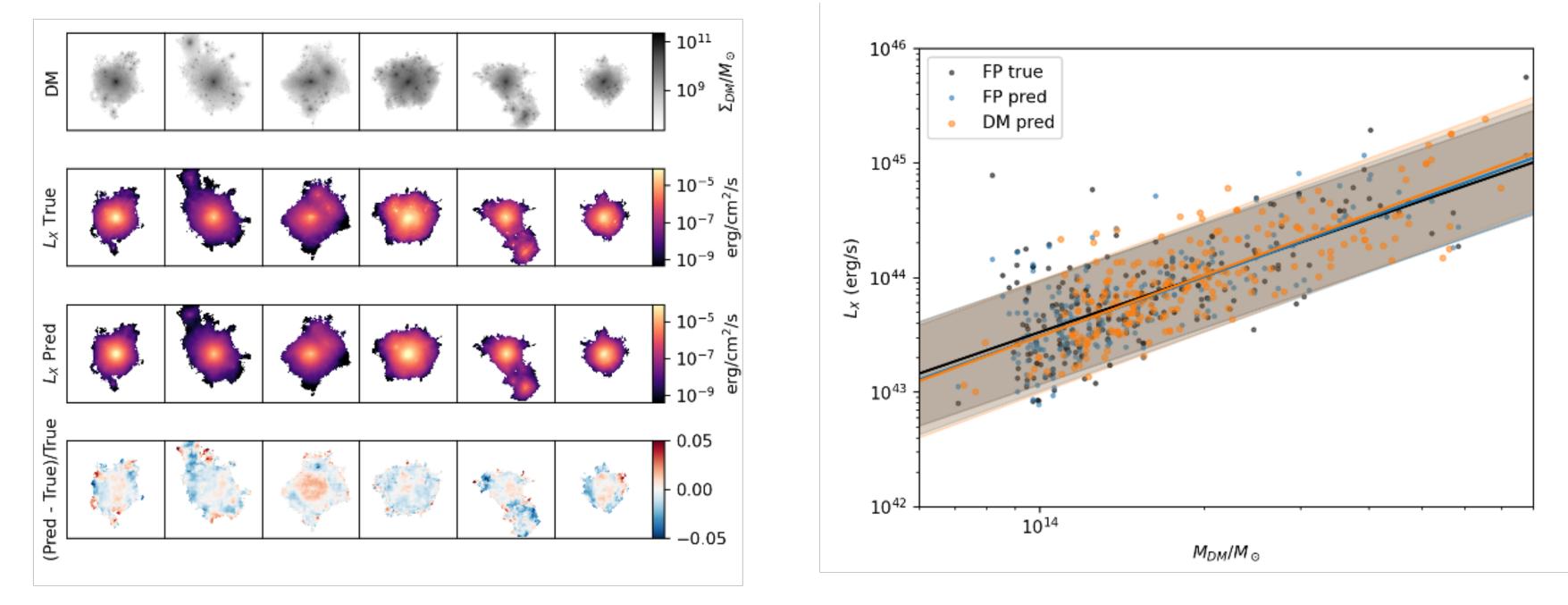
L_x predicted over 3 OOM for 1 OOM in halo mass

Training on image level, but population statistics recovered



+ we recover the scatter in scaling relations!

1. CNNs allow us to predict ICM observables from DM-only simulations at the % level, and reproduce scatter in scaling relations

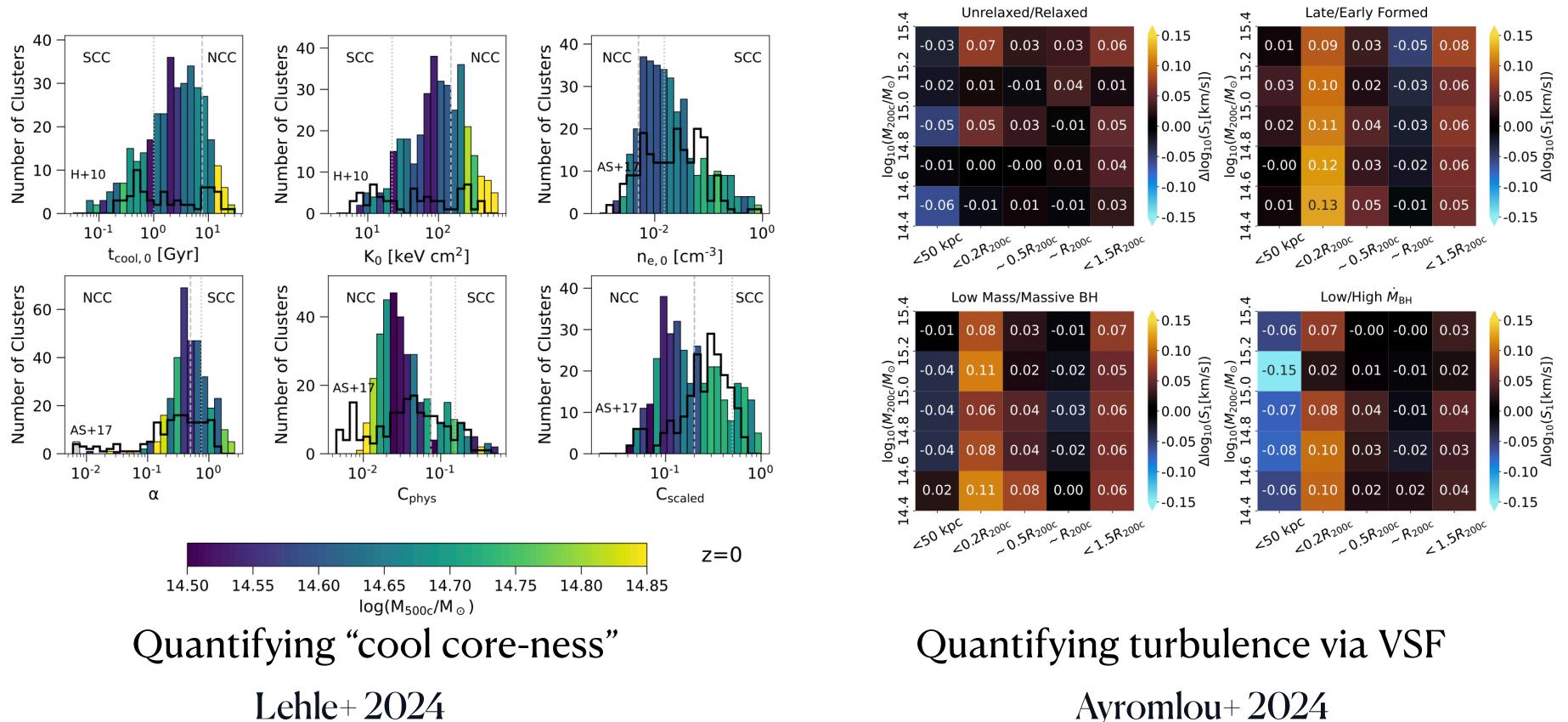


(We can also tackle the inverse problem)

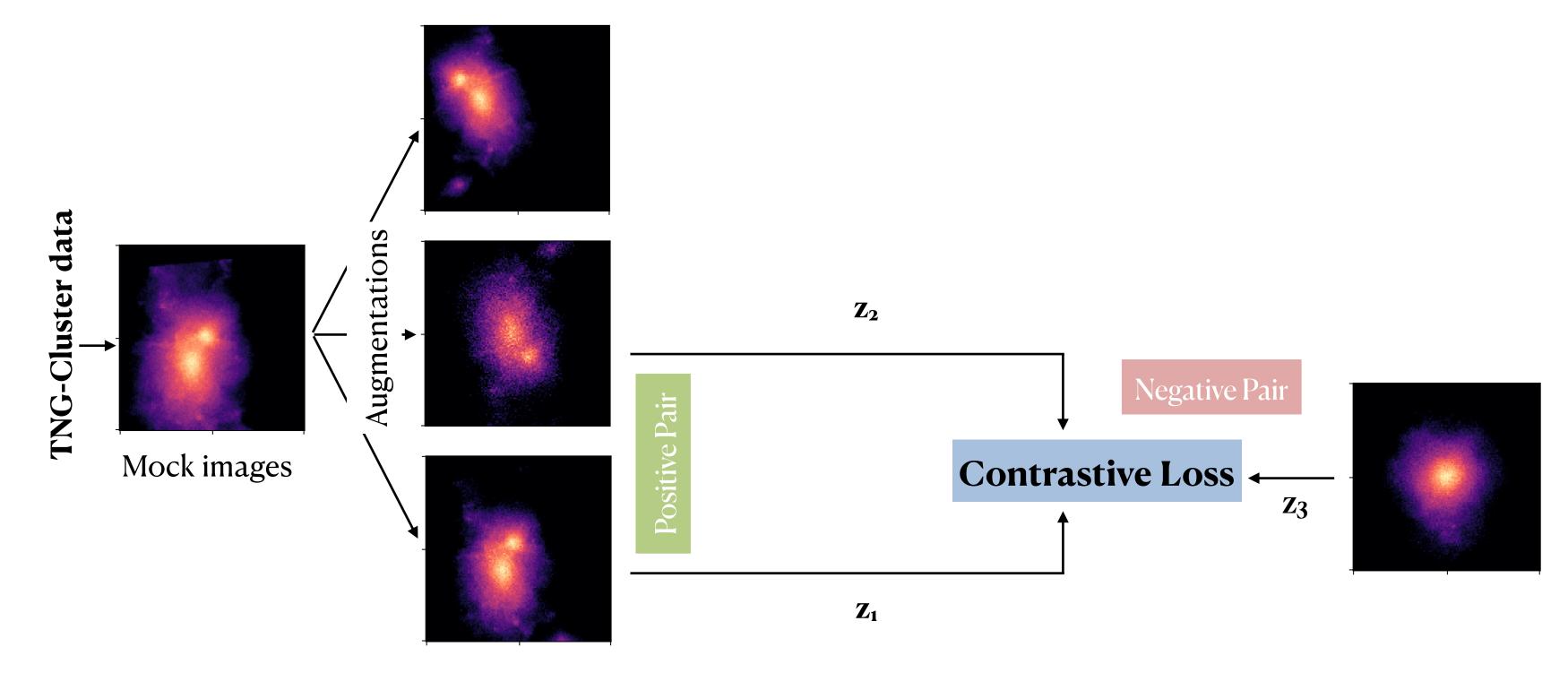
The Three Hundred Project: Mapping The Matter Distribution in Galaxy **Clusters Via Deep Learning from Multiview Simulated Observations**

Daniel de Andres^{1,2*}, Weiguang Cui^{3,1,2}[†], Gustavo Yepes^{1,2}, Marco De Petris⁴, Antonio Ferragamo^{4,5}, Federico De Luca⁴, Gianmarco Aversano⁶ and Douglas Rennehan⁷

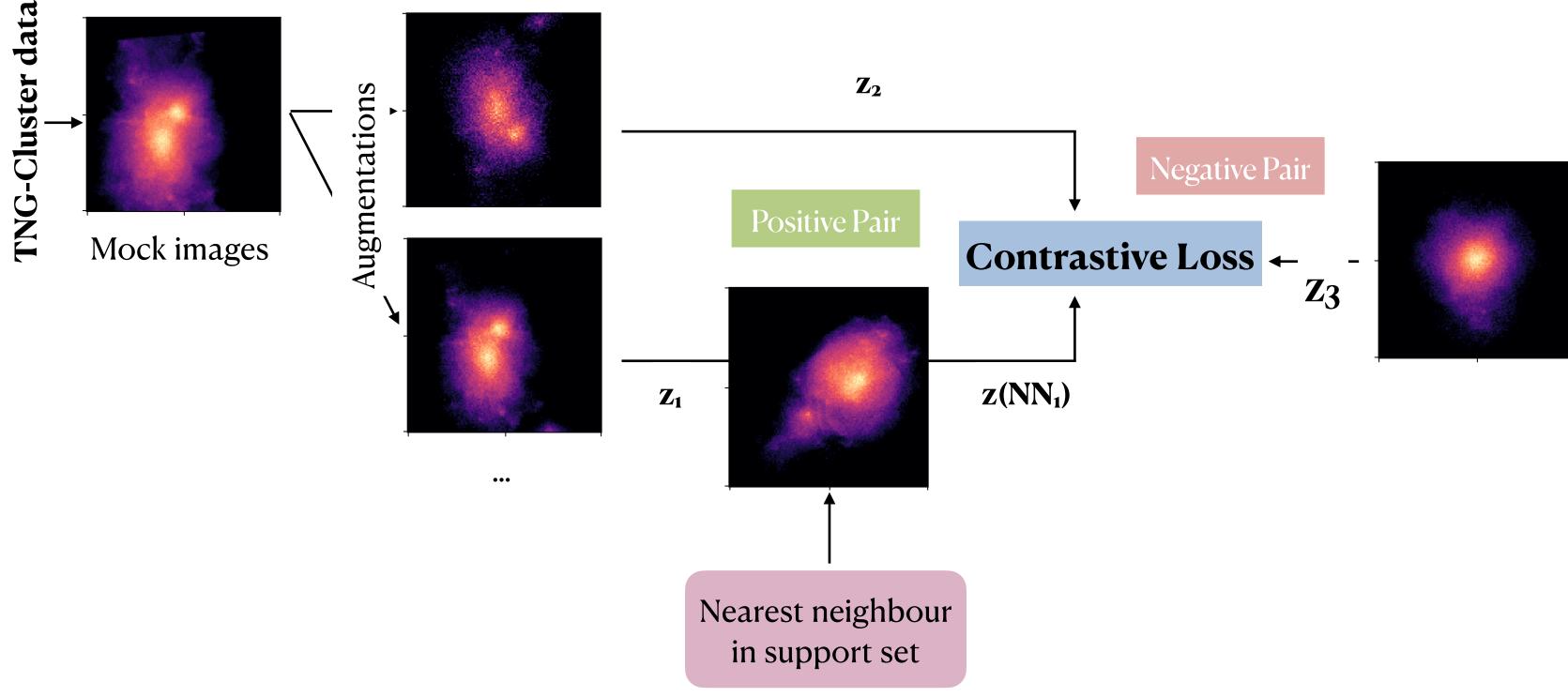
De Andres+2024



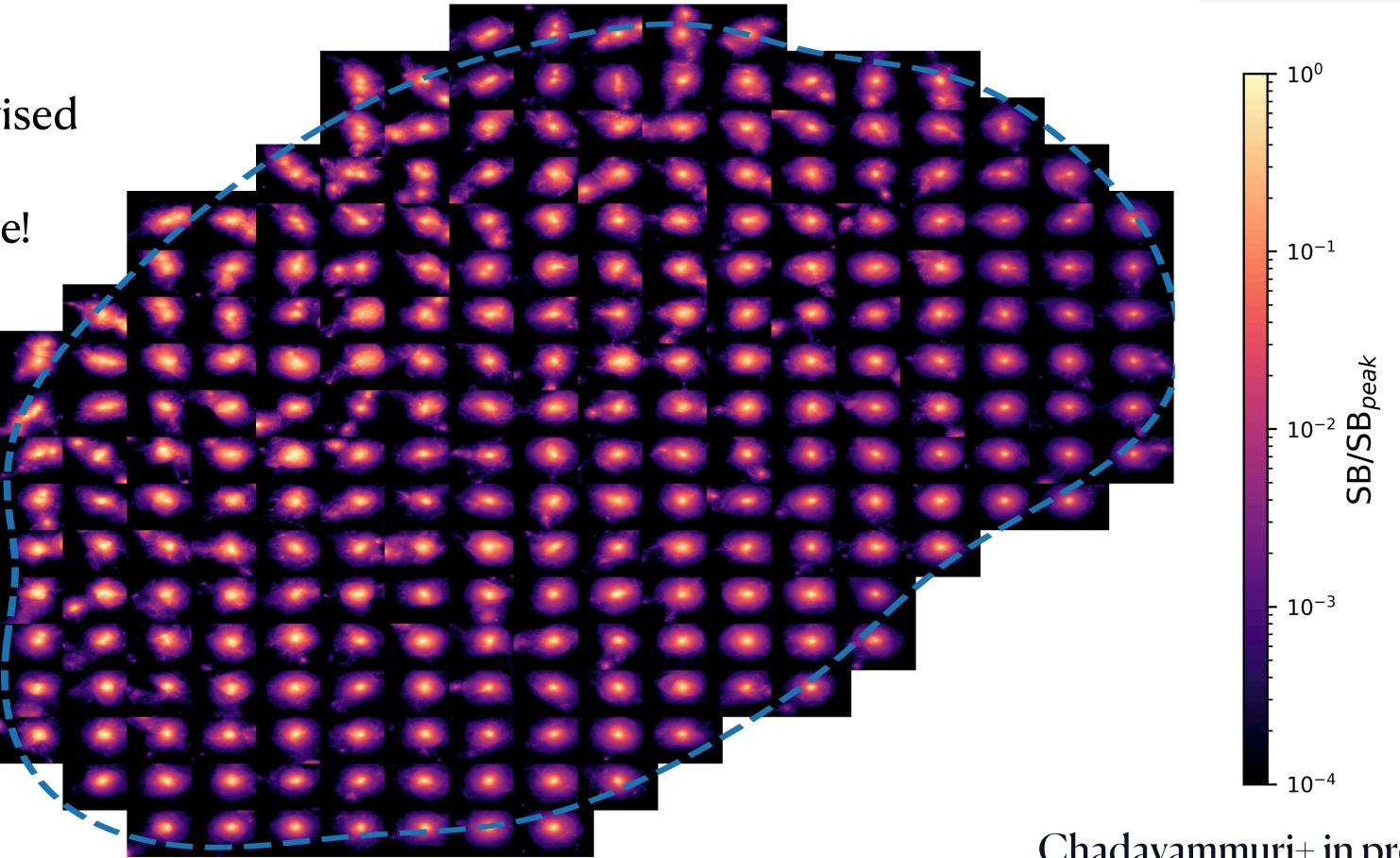
Contrastive learning: self-supervised sorting of images



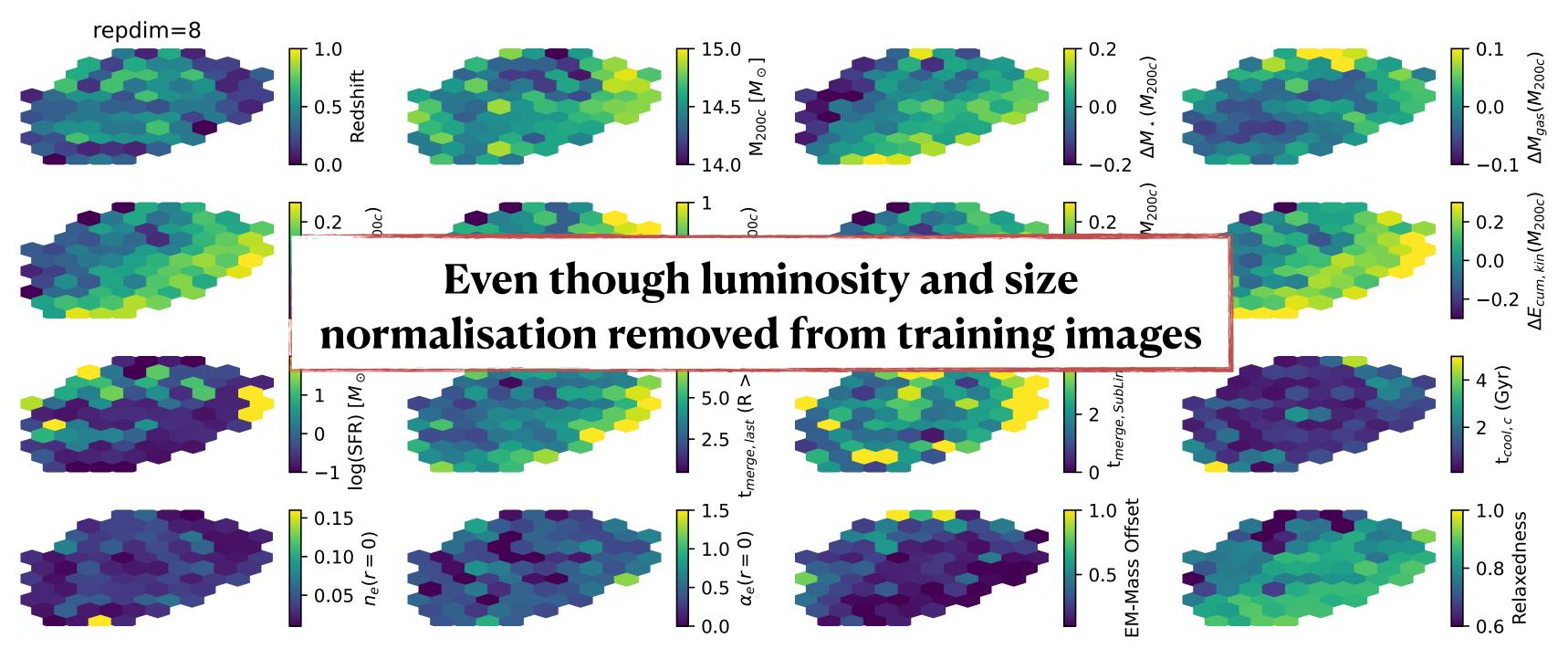
Nearest Neighbour Contrastive Learning (NNCLR, Dwibedi+ '21)



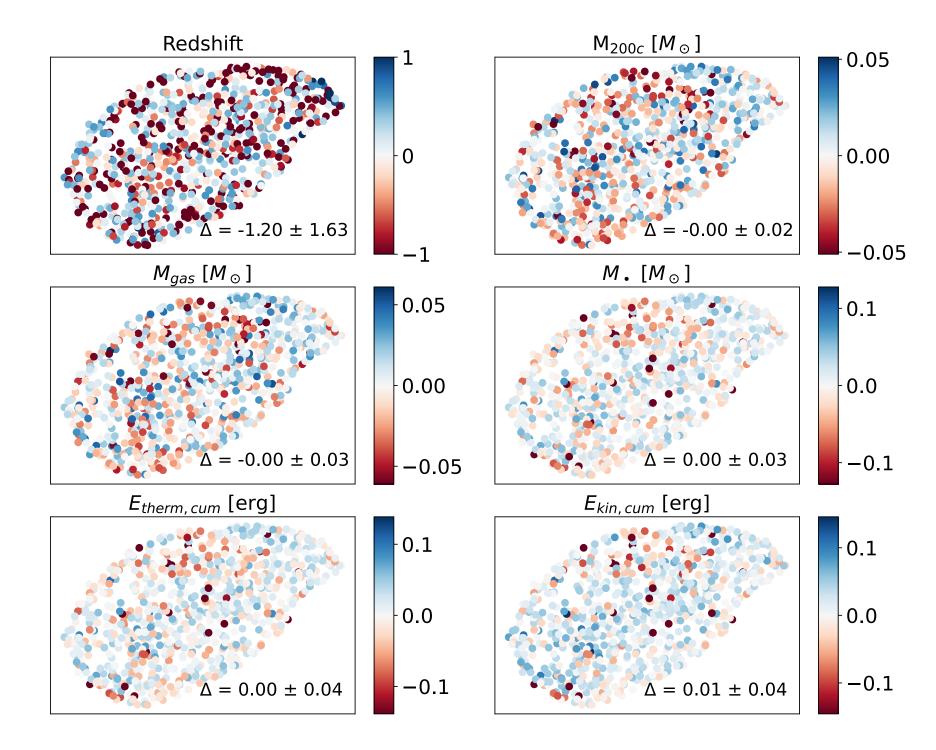
Self-supervised sorting in image space!

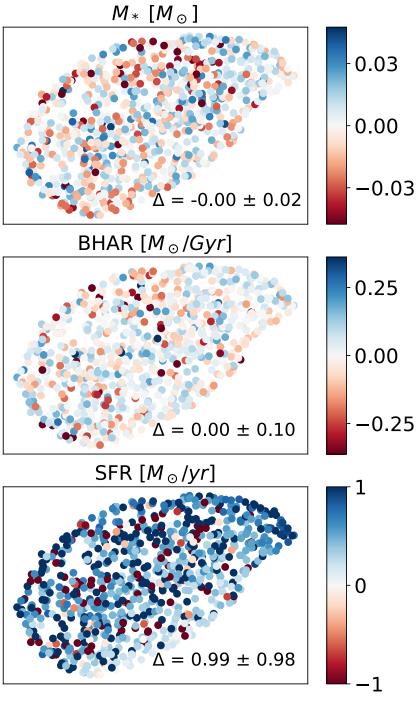


2. Median values of key galaxy cluster properties in bins of (self-supervised!) representation space *in narrow bins of halo mass*

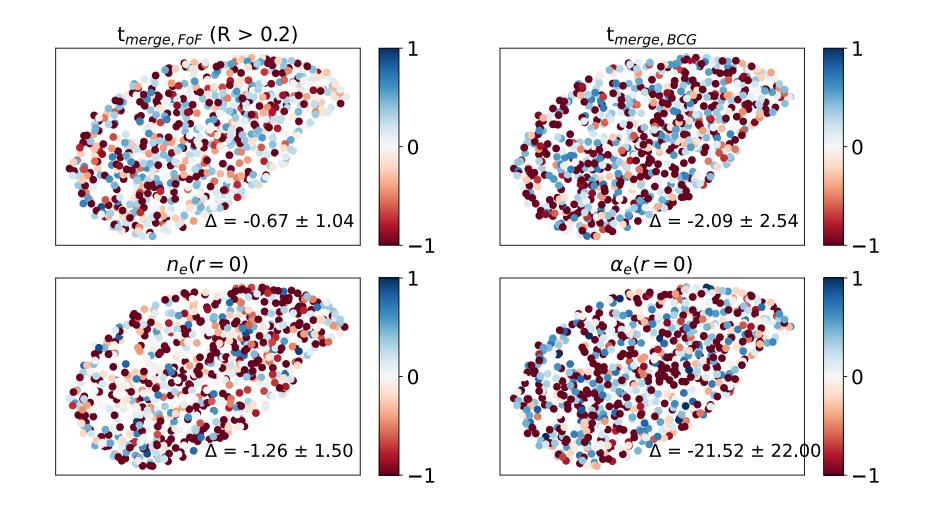


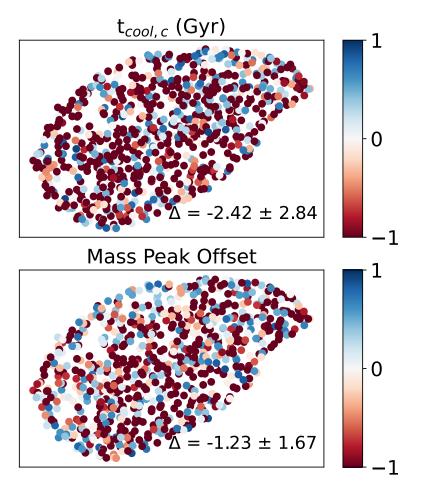
3. We can predict many galaxy cluster properties using just 2D representation of image



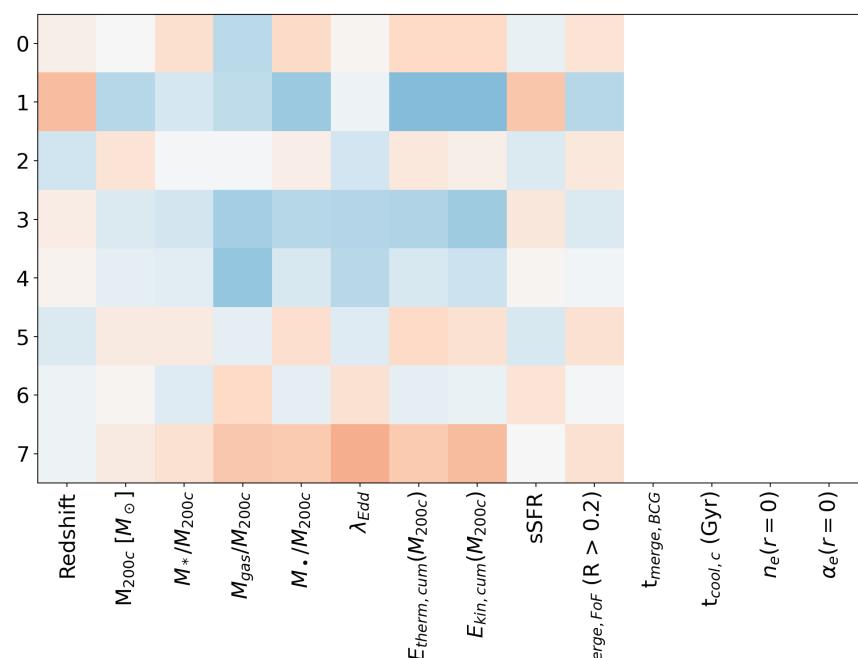


3. We can predict many gal ixy cluster properties ising just 2D representation of image (but not all)

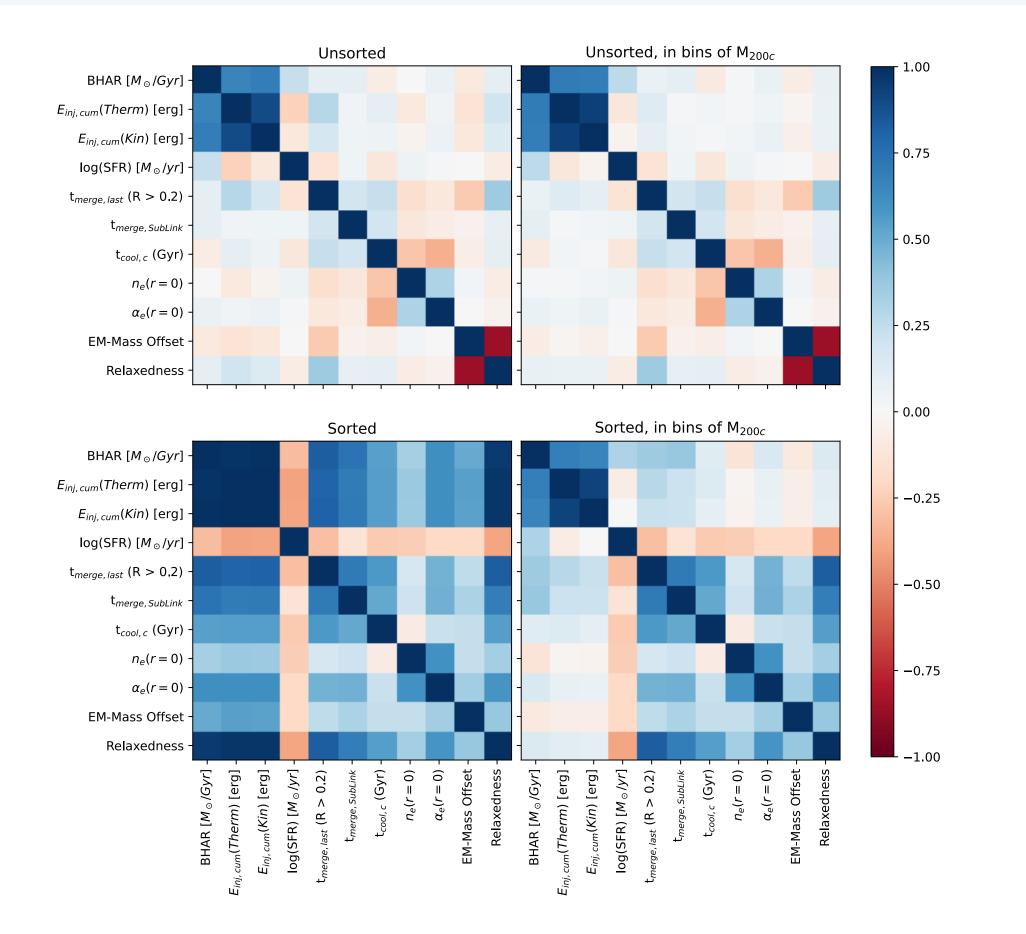




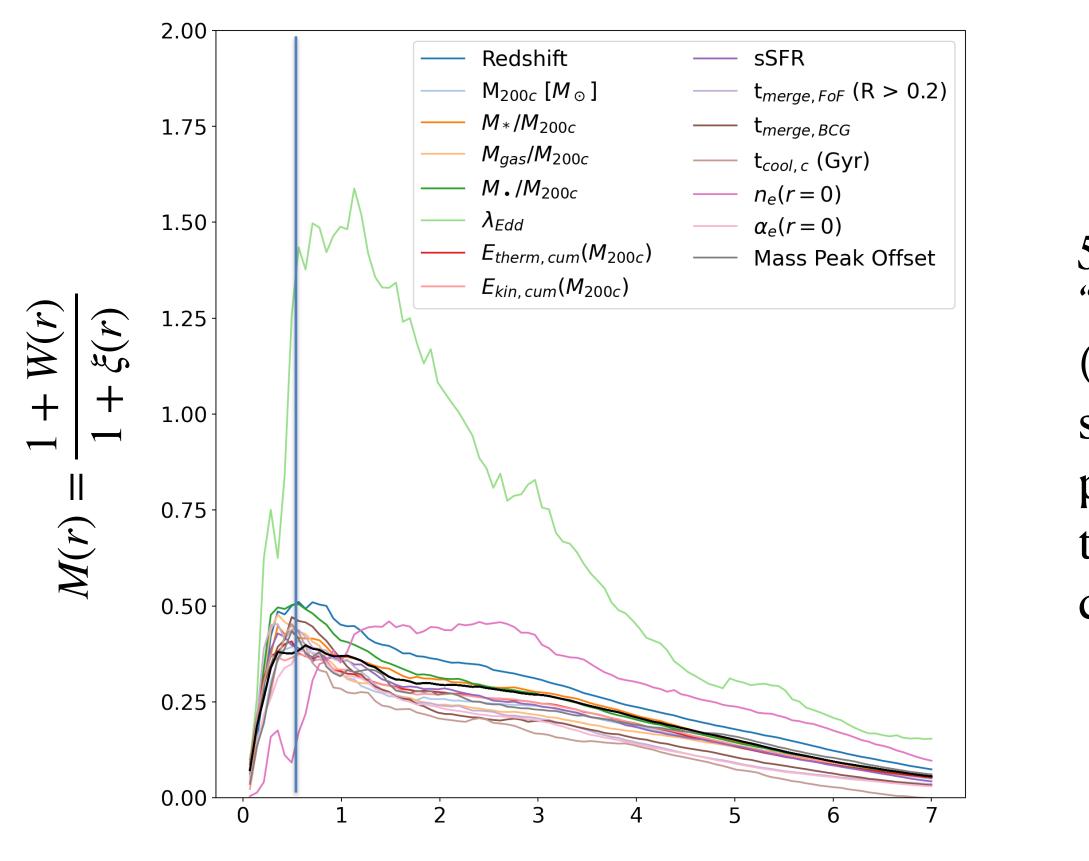
In fact, the properties we predict poorly are the ones that show least correlation with any of the representation parameters



1.00	
	- 0.75
	- 0.50
	0.25
	- 0.00
	0.25
	0.50
	0.75
	-1.00

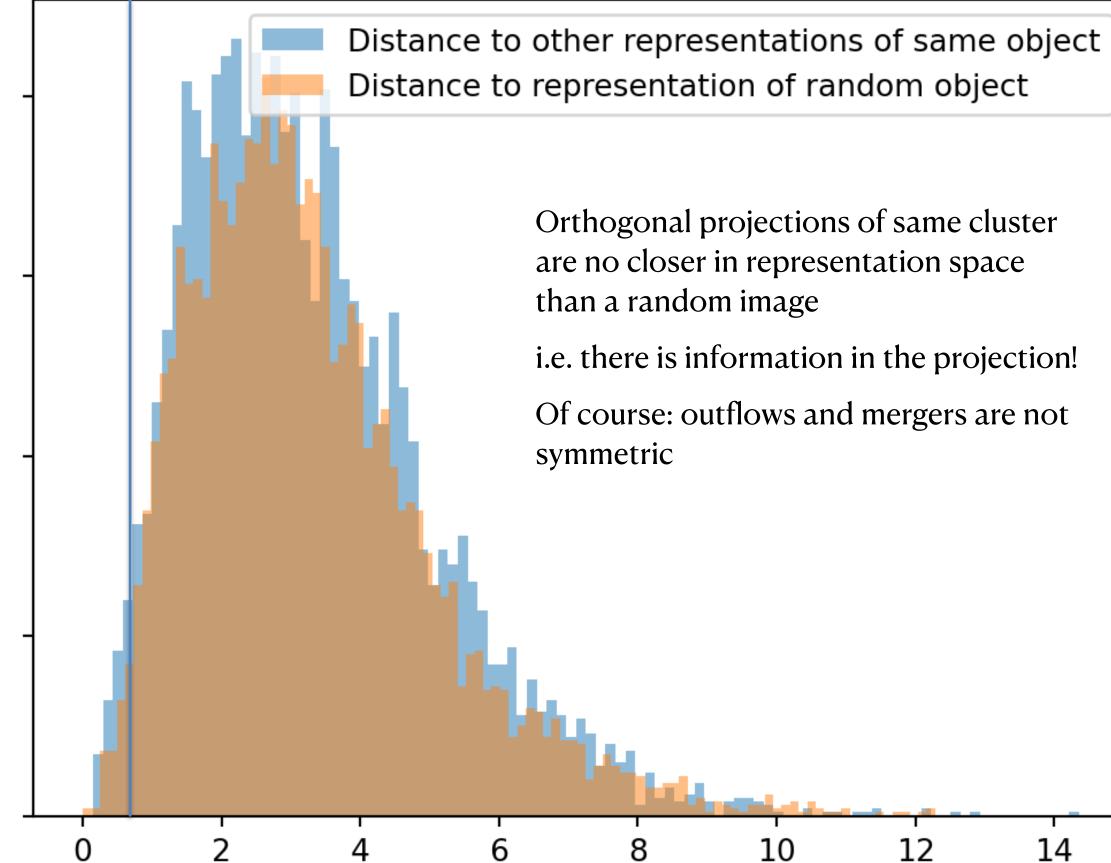


4. We can quantify relationships between physical properties for different populations in the image space



r

5. We can identify a "neighbourhood scale" in the (unphysical) representation space within which physical properties are more correlated to each other than the overall cluster population

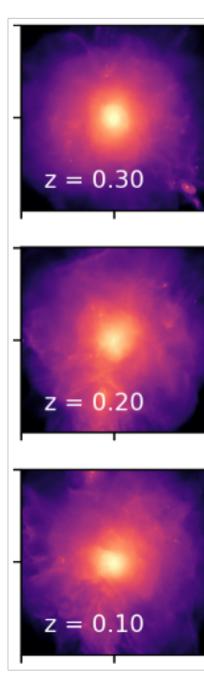


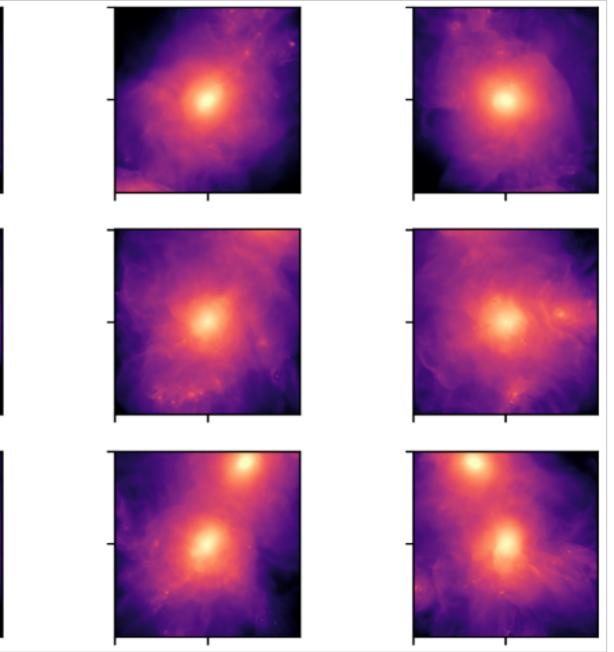
Chadayammuri+ in prep.

14

Nice side-effect: This is an analogue finder!

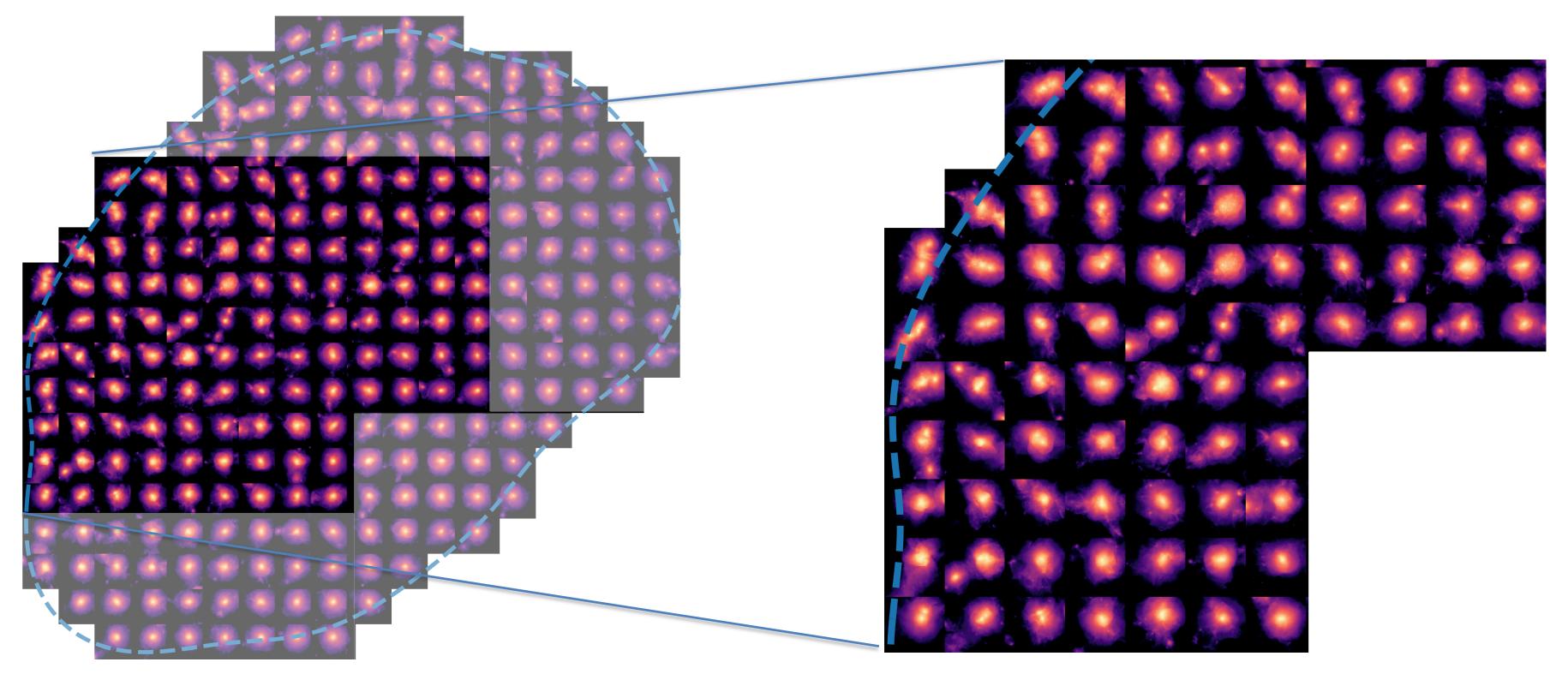
- Classic approach: apply cuts to mass ratio, impact parameter in merger tree
- But this can easily fail, because assigning particles to separate halos during mergers is very challenging



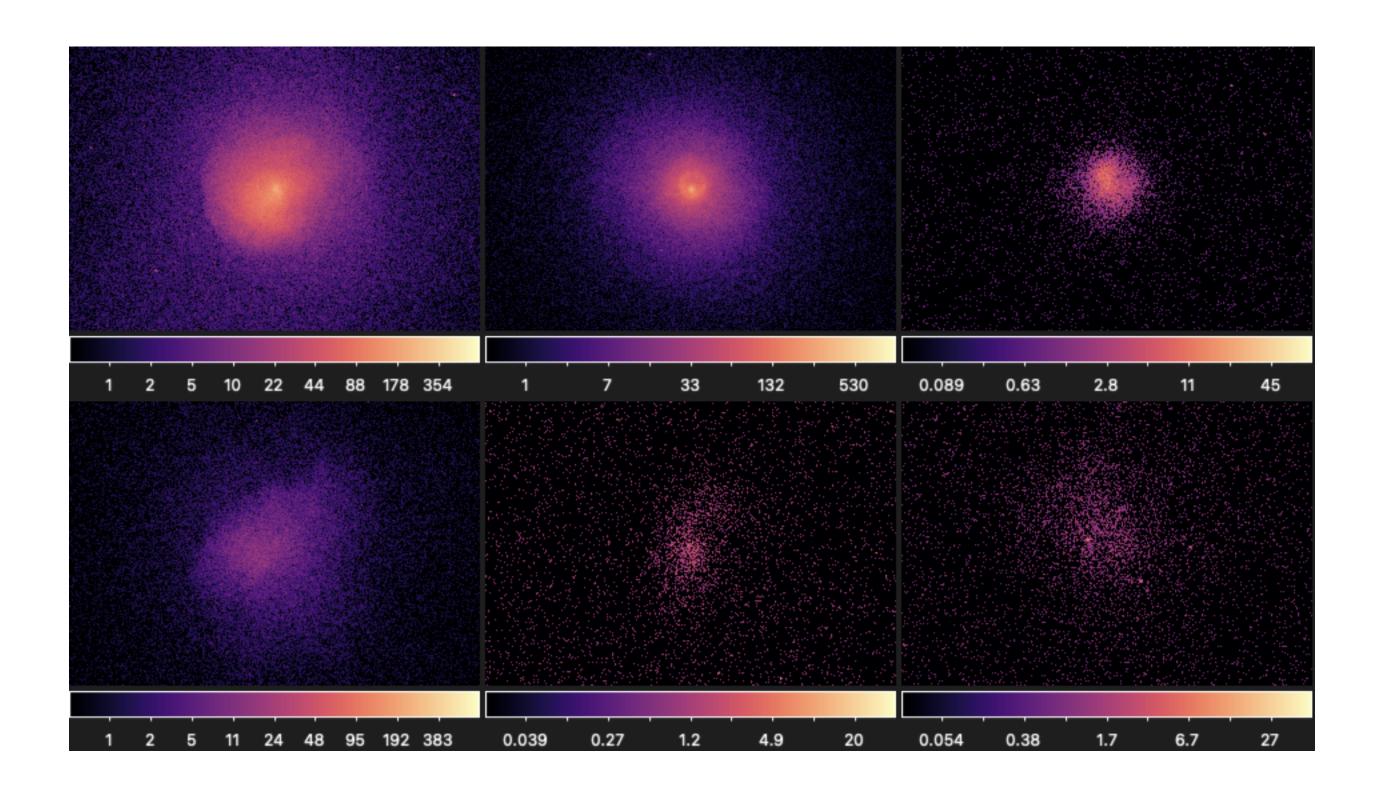


Nice side-effect: This is an analogue finder!

Instead: just find neighbours in representation space



Next step: How well does this work with realistic images?



Prunier, UC+ in prep.

Conclusions

• Galaxy clusters are powerful tools for both cosmology and astrophysics Requires mapping between baryons and dark matter

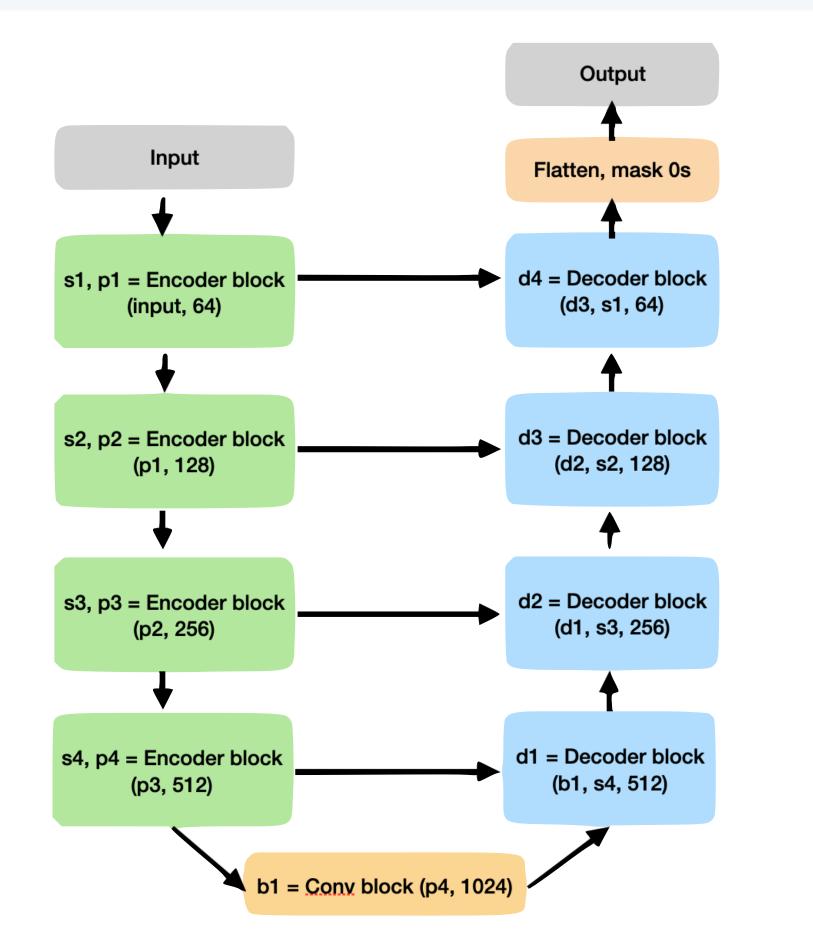
U-Nets can do this at the <1% level

• Image-based machine learning trained on cosmological simulations allows us to capture information that is lost in summary statistics and increase the **robustness of** cosmology + astrophysics **inference** from galaxy clusters

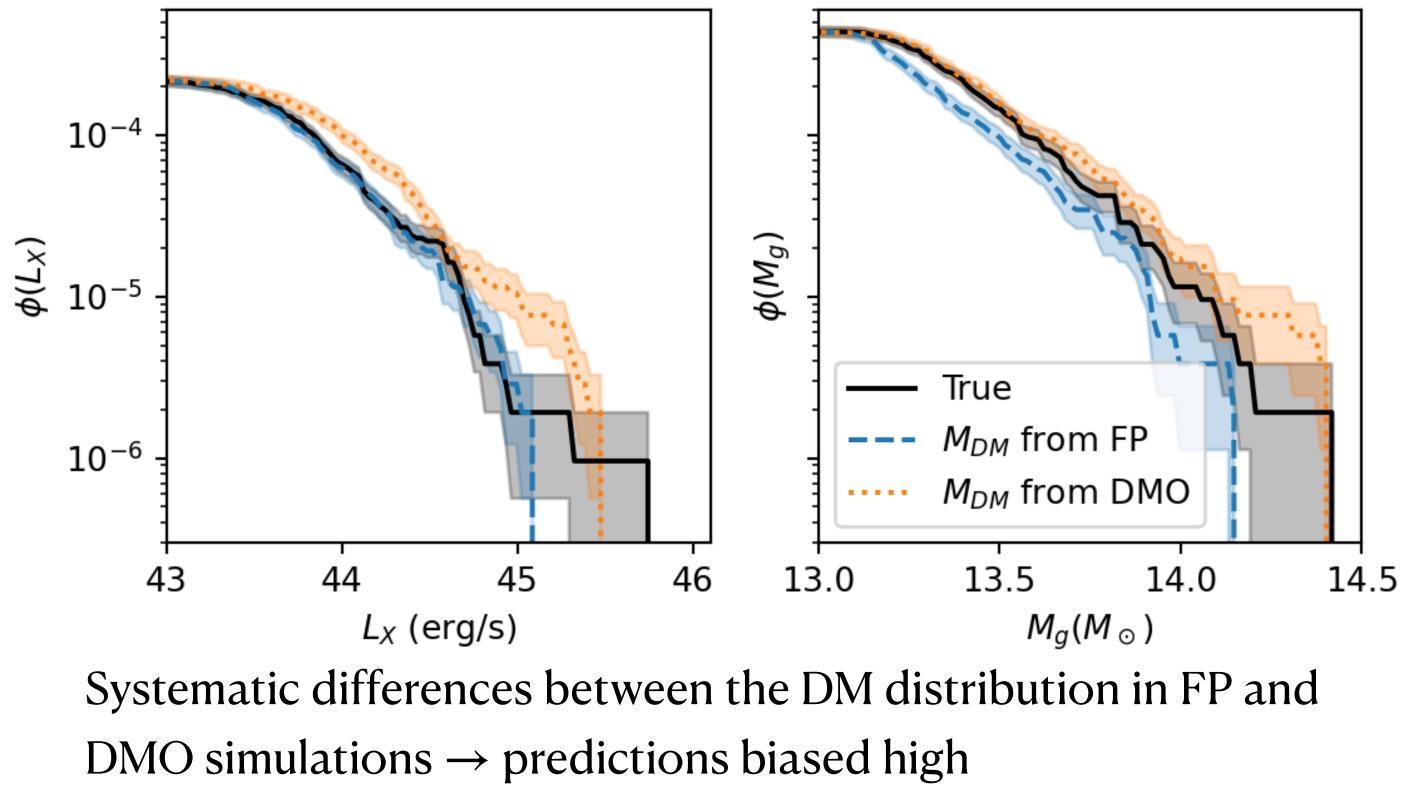
Requires finding analogues matched in assembly history + dynamics

Contrastive learning can reduce images to compact representation spaces where similar objects live nearby

Architecture: U-Net

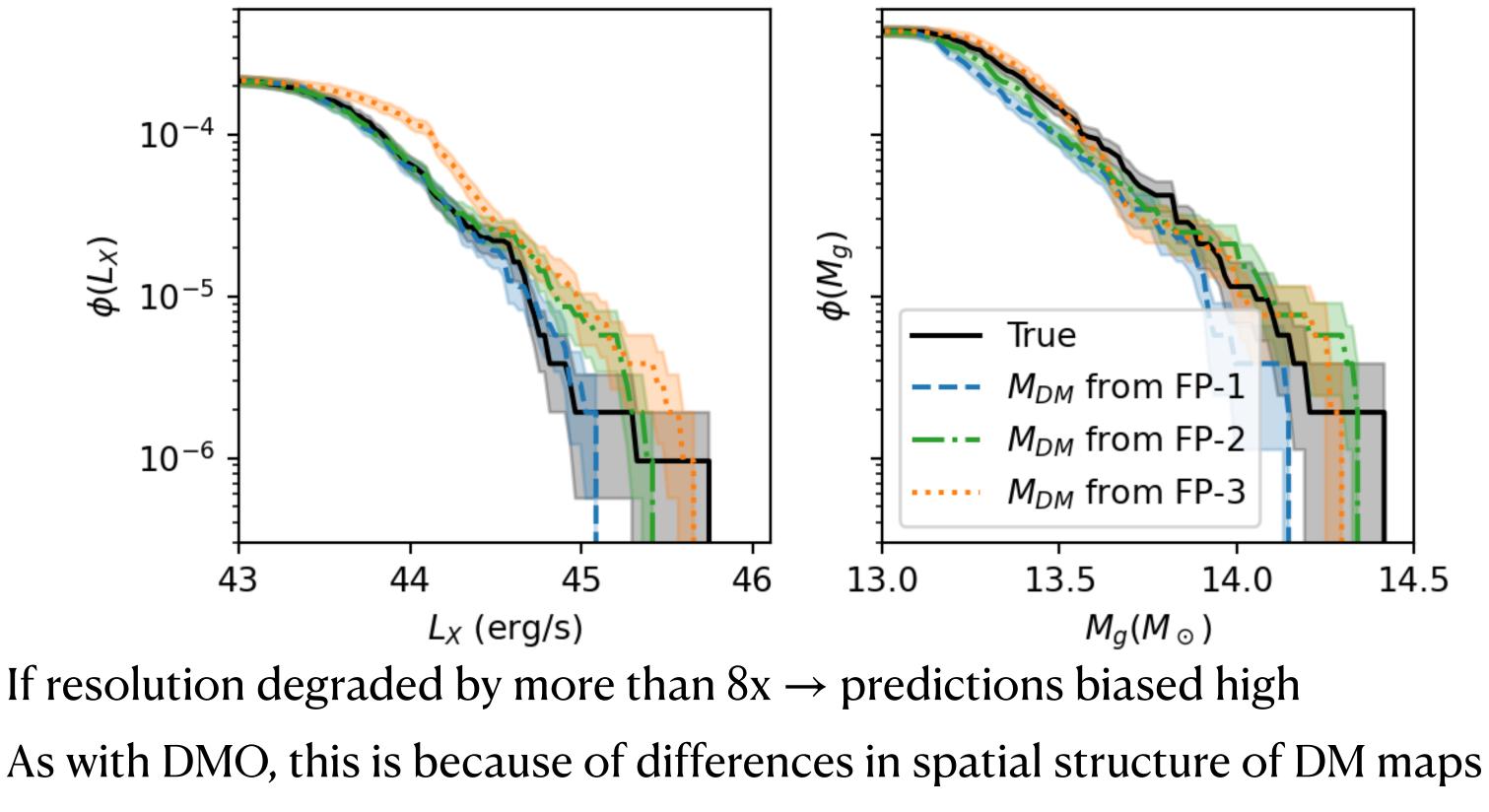


Training on $FP \rightarrow apply to DMO$

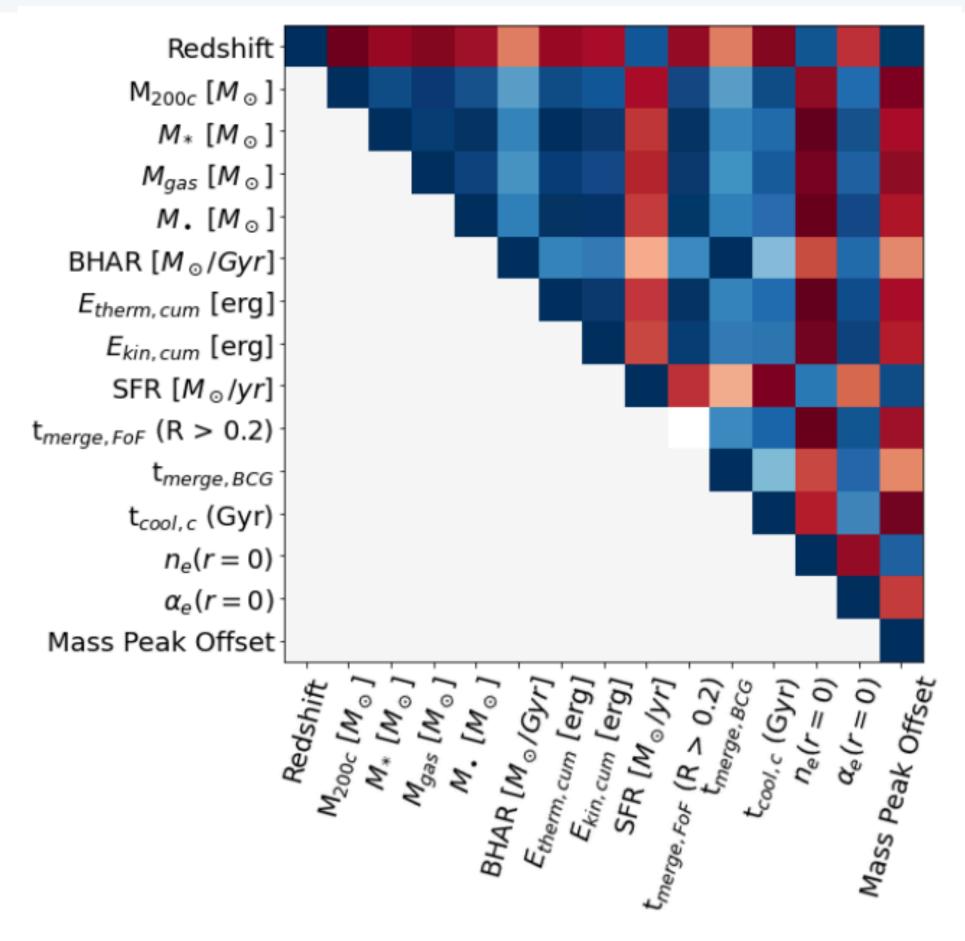


But can be calibrated

Training on high res \rightarrow apply to low res

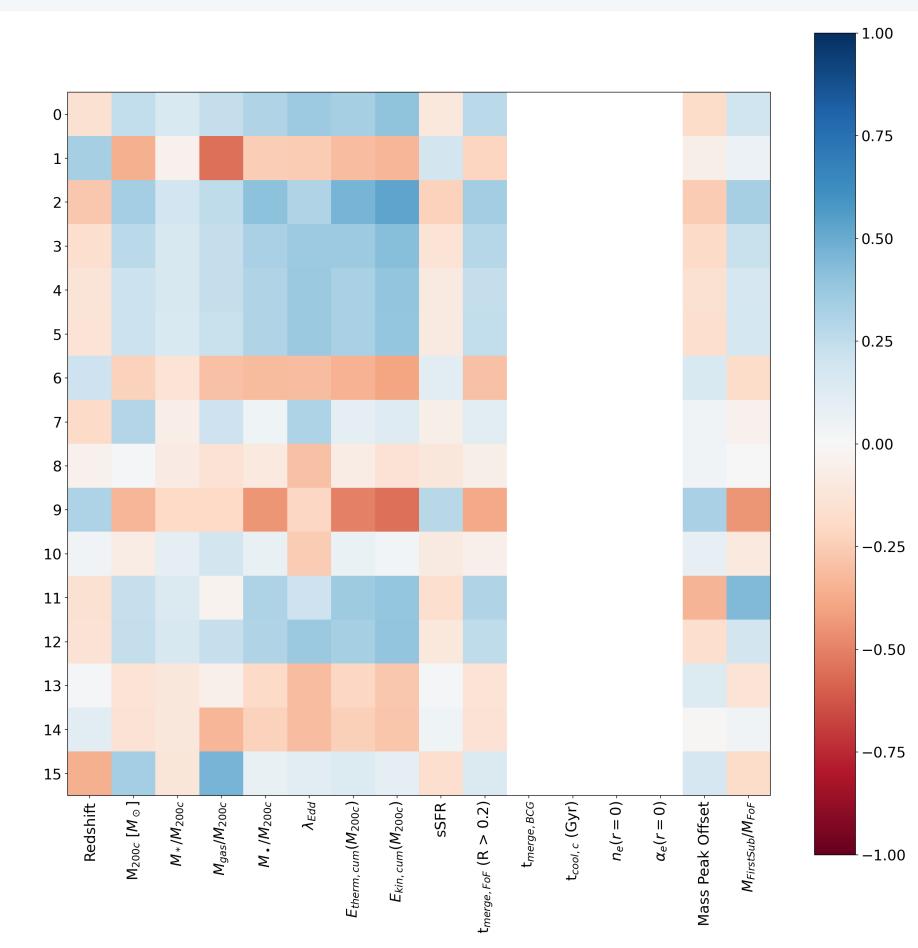


This, too can be calibrated



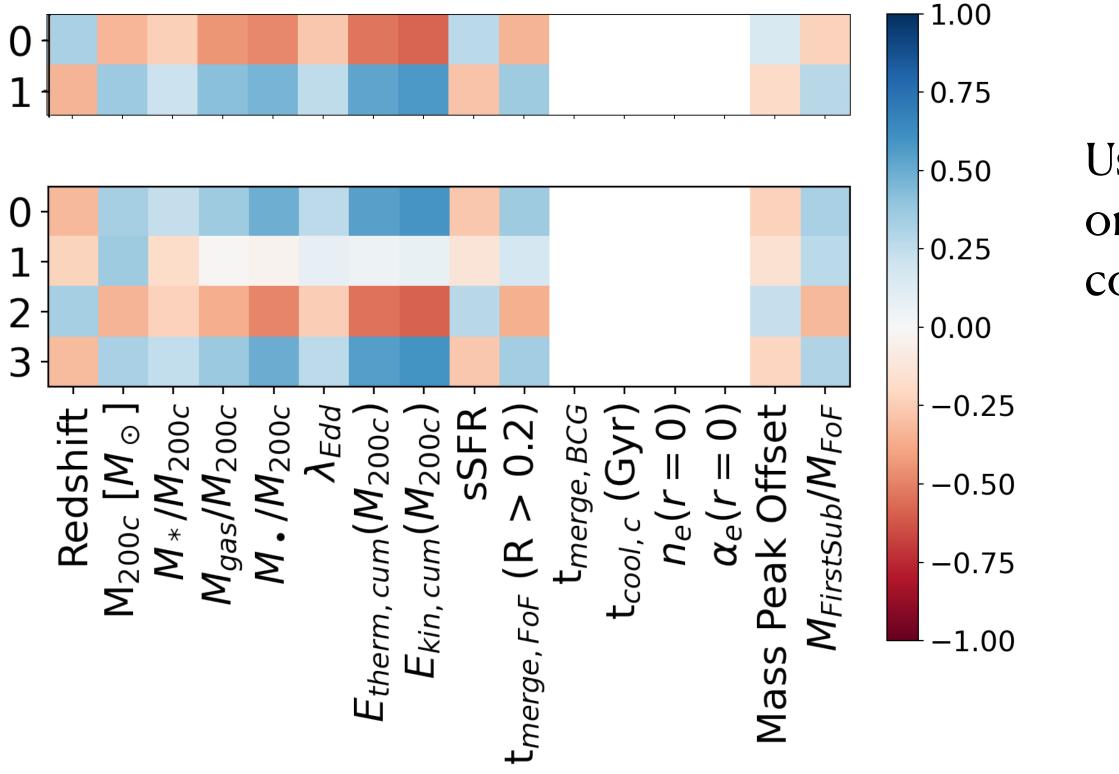
Quantifying relationships between physical processes in the representation space

What can we learn from the representation space?



Adding more representation
dimensions results in a few being
strongly correlated with halo mass,
BH properties, and time since merger,
and most being unrelated

What can we learn from the representation space?



Using < 8 dimensions focuses on BH trends (which in turn correlate with total mass)