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IV Stage surveys are observing the full sky in all 
wavelengths

CSST
Euclid

Rubin/LSST

DESI

Next Generation Surveys will collect billions of galaxies

eROSITA



NUV u g r i z y VIS YJH
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Next Generation Surveys will collect billions of galaxies



Billions of galaxies 

Euclid

Rubin/LSST

DESI

Next Generation Surveys will collect billions of galaxies

IV Stage surveys are observing the full sky in all 
wavelengths

CSST
tens of params: 
multi-mag 
multi-col (opt+NIR) 
sizes 
morphology 
redshifts 
velocities 
kinematics 
stellar masses 
total masses 
gas mass 
ages 
metallicity 
SFR 
BH masses



Physical (multi-wav observations) vs. artificial (simulations) universe  

Planck+eBOSS

Google



1) How can we efficiently measure billions of galaxy parameters?  
    Do we really need all of them (feature importance)?


2) How can we optimise the Science outcome from this tsunami of data?

Two main problems
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How to go from here To here

Two main problems

1) How can we efficiently measure billions of galaxy parameters?  
    Do we really need all of them (feature importance)?


2) How can we optimise the Science outcome from this tsunami of data?



Lately some tensions have emerged in the parameter estimations from high and 
low-redshift universe

Freedman et al. 2019

H0

KiDS collaboration

Ωm — σ8 (S8) 

low-z

high-z high-z

low-z

Can we use galaxies to solve the cosmo parameter tensions?
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Different DM “flavors” would produce different predictions and alleviate other 
CDM headaches like the core/cusp, the “too big to fail” and the satellite crisis that 
we find at galaxy scales. 

Can we use galaxies to test the Nature of the Dark Matter?

Mayer 2022

core/cusp

too big to fail

missing  
satellite



And yet we need to fully understand the impact of the baryon physics, as 
feedbacks from e.g. AGN or supernovae, strongly affect the galaxy formation and 
determine the number and shape of the galaxies actually formed in the dark haloes  

Can we use galaxies to test the Baryon Physics? (Feedback)

Silk & Mamon 2012

Garrison-Kimmel et al., 2017

Milky Way-mass host halo (left) and in a hydrodynamic simulation of the 
same system from the FIRE project
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And yet we need to fully understand the impact of the baryon physics, as 
feedbacks from e.g. AGN or supernovae, strongly affect the galaxy formation and 
determine the number and shape of the galaxies actually formed in the dark haloes  

Can we use galaxies to test the Baryon Physics? (Feedback)

Silk & Mamon 2012

Garrison-Kimmel et al., 2017

Milky Way-mass host halo (left) and in a hydrodynamic simulation of the 
same system from the FIRE project vs.

WDM



Our reference dataset: the Kilo-Degree Survey

To	 get	 prepared	 for	 this	 challenge	 we	 have	 used	 current	
high-quality	 ground-based	 surveys	 with	 image	 quality	
comparable	to	LSST

Kilo Degree Survey (KiDS) @ VST 
PI: Kuijken (Leiden) + ~140 members

1350 deg2 sky

9 bands  ugri (optical) + ZYJHK (near infrared)

from VIKING @ VISTA (PI: A. Edge)

high-quality imaging (FWHM~0.7’’ in r-band)

~200 million sources

~60 million galaxies with redshifts 9 bands  ugri  + ZYJHK (opt+NIR)


KiDS + VIKING footprint
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GaLNet GaPNetGaSNet

Ellipticals, spirals, disks

kinematics Structure Stellar 
population（mass,age,sfr, 

Cosmology and galaxy evolution with ML

Images+SED（KIDS, CSST）

Star/QuasarsStar/galaxy classification (ML)

• Bulge/disk de-component

• De-blending for dense field

• De-blending for strong lensing

• non-parametric light profile

Automated detection and analysis of 
emission/absorption lines an kinematical 
estimates

Galaxies

Galaxy classification (CS, ML)
Special targets：

Strong lenses, Mergers,


Irregulars, UDGs

Done

Testing GaZNet

Morpho photometric redshifts

Rui Li (now Zhengzhou Un)

The GaXNet Environment
Rui Li & Nicola R. Napolitano →



Li, NRN, et al. 2021, ApJ

GaLNets: Convolutional Neural Networks for galaxy structure 

Sersic profile



GaLNet-1 GaLNet-2
Training data 200k 200k
Testing data 
(simulated)

20k 20k
Testing data 

(real, 2DPHOT)
25k 25k

Simulation of training/testing galaxies:
• Noise: randomly cutouts from KiDS DR4
• PSFs:  fitted from the stars using 2DPHOT.
• Real-like galaxies: Sersic profile Convolved
    by PSF, then add noise. 

GaLNets: Convolutional Neural Networks for galaxy structure 



Regressor CNN

label 1 (p11, p12, p13, p14…)

label 2 (p21, p22, p23, p24…)

label 3 (p31, p32, p33, p34…)

label 4 (p41, p42, p43, p44…)

GaLNets: Convolutional Neural Networks for galaxy structure 



GaLNet-1

GaLNet-2

galaxy

psf

GaLNets: Convolutional Neural Networks for galaxy structure 

Takes into 
account the 
local  PSF



GaLNets: Convolutional Neural Networks for galaxy structure 
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Comparison of GaLNets vs Standard on KiDS “real galaxies”
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Comparison of GaLNets vs Standard on KiDS “real galaxies”
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1 million galaxies: from 1 month to 1 hour! 
2DPHOT/Galfit: ~ 6s/galaxy  
GaLNets with CPU: ~0.04s/galaxy  
GaLNets with GPU (RTX2070): ~0.004s/galaxy 

Why CNN?  
Performs as well as standard tool  
but it is much faster

Comparison of GaLNet-1 and GaLNet-2 vs Standard



Advatages:

1. Unbiased parameters can be got by both GaLNet-1 and 
GaLNet-2.

2. GaLNet-2 performs general better than GaLNet-1.
3. PSFs affect more on q and n.
4. 2DPHOT performs the best, however, GaLNet-1 have a 

close performance.
5. GaLNets are 1000 times faster than traditional codes (e.g. 

2DPHOT).



GaLNet for Bulge/Disk Decomposition

Qiu, Li, NRN, et al. submitted



KiDS@VST

▪	~1arc/deg2	or	 
▪	0.1	lensed	quasar/deg2	
▪	typically	120k	source/deg2	 
▪	40k	galaxies/deg2	 
▪	~10%	being	ETGs	with	Mass>1010.5Msun	 

▪	~5M	candidates	in	1350deg2	(and	~1000	real	lenses)

Strong Lensing with Machine learning

We	have	seen	that	EUCLID	and	CSST	will	provide	up	to	105	SGLs	over	~1Billion	of	
observed	galaxies	

To	get	prepared	to	this	challenge	we	have	used	current	high-quality	ground-
based	surveys	
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Input Feature map Feature map
Output

Convolution Convolution

Input layer Hidden layer Output layer

x yf(x)

Fig.—A simple CNN architecture with input layer, hidden layer and outout layer. In 

the hidden layer, the CNN extract feature maps with convolution kernels. 

Convolutional kernel (neuron) 

Pr
ob

ab
ili

tie
s 
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Strong Lensing with Machine learning





Samples in KiDS DR4 (From Petrillo 2019 and Li 2020)
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New HQ strong lenses in KiDS DR5 (Li, NRN et al. 2021, ApJ)
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Modeling Gravitational lenses

To model a lens one need to determine :

1) The properties of the mass acting as lens 
2) The light of the lens

3) The position and light distribution of the 

source 

NRN et al. 2020, ApJL

Typically 20 parameters



Mock (HST)

Mock (CSST)

Li, NRN, 2021

Background

Zhu, Li, NRN et al. to be submitted 

Modeling Quads with Machine Learning



Targets

Source Position, luminosity, reff, n-index, 
b/a, PA

Galaxy Luminosity, reff, n-index, b/a, PA

Mass Einst. rad., b/a, PA

Results (HST) 200k training 10k test 

Modeling Quads with Machine Learning



Modeling Quads with Machine Learning



What About Science?



Galaxy Mass Estimate machine Learning Algorithm (MELA)

Train/Validation/Test

Predictive sample

MaNGA-Dynpop: Zhu et al. 2023, 



Train/Validation/Test

Predictive sample

Galaxy Mass Estimate machine Learning Algorithm (MELA)

MaNGA-Dynpop: Zhu et al. 2023, 

Important Features

effective redii


stellar masses

velocity dispersion



Using Machine Learning to match simulations and data and predict 
cosmology (see CAMELS and DREAMS — Villaescusa-Navarro talk) 

Ωm, ΩΛ, H0, σ8

CDM, SIDM, WDM

fe
ed

ba
ck

Catalogs of sim. galaxies  
(Training)

Visible matter (opt+NIR) Dark Matter  
(Lensing)

Observational data 
catalogs of tens of features/gal 



Ωm, ΩΛ, H0, σ8

CDM, SIDM, WDM

fe
ed

ba
ck

Catalogs of sim. galaxies  
(Training) Observational data 

catalogs of tens of features/gal 

Visible matter (opt+NIR) Dark Matter  
(Lensing)

feedback



Galaxy Clusters for cosmology using ML

How well the classifier is able to recognise a given 
mock catalog to come from the right cosmology Cosmological parameter inferences

Qiu, L., NRN et al. 2024, A&A, arXiv:2304.09142
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Important Features

stellar mass


gas mass

total mass



Take away messages
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Machine/Deep Learning are groundbreaking techniques for large surveys


Data are coming and it is time to move from proof-of-concept to real data 
applications
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