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Tremonti+04

z ∼ 0

  galaxies

 from SDSS (~2.000.000 

galaxy spectra)

> 50.000

Curti+24

z ∼ 0 − 10

Upcoming all-sky spectroscopic survey 

(DESI, 4MOST, MOONS): hundreds of millions of 
spectra will be acquired in the next half-decade.

- Galaxy evolution across cosmic time is a key topic of modern astro 


- How it works? We observe galaxies at all epochs, measure their physical 
properties and use the relations among them to tune physical models.

~20 years

(VLT, Keck…

…JWST !)

Madau+14; Förster Schreiber+20



- 1000 fibres, over a field of view of  arcmin;

- low- (R~4000–7000) / high-resolution (~19000 in H);

- 0.64 – 1.8 μm wavelength range.

∼ 5002

MOONS is the new Multi-Object Optical and 
Near-infrared Spectrograph, soon to be 
operated @VLT, ESO (8-m telescope)

Any data challenge?


• up to about half a million galaxies at 


• >12000 elements per spectrum in low-resolution!


• Standard fitting methods are slow and fail in weak-
signal regimes

0.9 < z < 2.6

Maiolino+20, Cirasuolo+20



Simulated dataset
•~120.000 spectra

•generated by running MAMBO 

templates through moons1d

•moons1d ran with low resolution mode 

for all 3 channels (RI, YJ, H), 0.64-1.8 μm

•a seeing of 0.8'' and airmass of 1.2


•  texp = 2 − 4 − 8 h



Hα

Model Simulated spectrum

• 


• 0.64 – 1.8 μm


• 12.217 channels

texp = 2, 4, 8 h

logF(Hα) ∼ − 17

logF(Hα) ∼ − 16.6

logF(Hα) ∼ − 15

Dataset

Target physics

•redshift, 


•stellar mass, 


•star formation rate, 

z

Mstar

SFR



Pre-processing
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Median-filtering (kernel: 1000)

Sky-masking

HDU5: sky flux with noise, in ph/s/cm^2/AA/arcsec^2

Masked about ~ 15% of spectral channels

Continuum subtraction

&


Min-max normalisation



Deep learning MOONS spectra

x1
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x3

xn
…

z = 1.00

Classical scheme: a regression problem

The case of redshift
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…

z = 1.00

z = 1.000 (P = 0.95)

z = 0.997 (P = 0.1)

z = 2 (P = 0)

z = 1.003 (P = 0.05)

We adopt dz = 0.003

 Switch to a classification problem

… and let the “softmax + cross-entropy” team work for us (better than the “linear + mse” team)    :-) 



One-hot encoded labels

Neural net Trained with a cross-entropy loss and 
a softmax activation in the last layer

One-hot encoded labels

Neural net

z = 1 z = 1.1 z = 1.2 z = 1.3 z = 3. . .

We can also account for the quality of spectra
(for instance using the rms)

. . .z = 1 z = 1.1 z = 1.2 z = 1.3 z = 3 . . .z = 1 z = 1.1 z = 1.2 z = 1.3 z = 3

. . .z = 1 z = 1.1 z = 1.2 z = 1.3 z = 3

 Switch to a classification problem



Learning through multi-task training

Line-Location Task

Ruder+17; Crawshaw+20; Hervella+24 etc

emission_lines_rest = {

    'OII_1': 3727.1,            # Oxygen II 

    'OII_2': 3729.9,            # Oxygen II

    'H_beta': 4862.7,           # Hydrogen-beta

    'OIII_1': 4960.3,           # Oxygen III

    'OIII_2': 5008.2,           # Oxygen III

    'NII_1': 6549.8,            # Nitrogen II

    'H_alpha': 6564.6,          # Hydrogen-alpha

    'NII_2': 6585.3,            # Nitrogen II

    'SII_1': 6718.3,            # Sulfur II

    'SII_2': 6732.7,            # Sulfur II

    'SIII_1': 9070,             # Sulfur III

    'SIII_2': 9532,             # Sulfur III

   'NV': 1240,                 # Nitrogen V

    'SiII_1': 1260,             # Silicon II

    'OI': 1303,                 # Oxygen I

    'CII': 1334,                # Carbon II

    'SiIV_1': 1393,             # Silicon IV

    'SiIV_2': 1402,             # Silicon IV

    'SiII_2': 1526,             # Silicon II

    'CIV_1': 1548,              # Carbon IV

    'HeII_1': 1640,             # Helium II

    'OII_3': 1660,              # Oxygen II

    'OII_4': 1666,              # Oxygen II

    'CIII': 1909,               # Carbon III

    'CN': 3875,                 # Cyanide radical

    'CaII_1': 3933,             # Calcium II

    'CaII_2': 3969,             # Calcium II

    'FeII': 4668,               # Iron II

    'MgI_1': 5167,              # Magnesium I

    'MgI_2': 5172,              # Magnesium I

    'MgI_3': 5183,              # Magnesium I

    'FeI': 5270,                # Iron I

    'NaI_1': 5892,              # Sodium I

   'NaI_2': 8183,              # Sodium I

    'NaI_3': 8195,              # Sodium I

    'CaII_3': 8489,             # Calcium II

    'CaII_4': 8542,             # Calcium II

    'CaII_5': 8662,             # Calcium II

    'HeII_2': 10830             # Helium II

}


Line 

location 

z (PDF)

?



Mstar

Residual blocks 

w. Conv Layers

Shared spectral 
representation MLP

Dense Encoder
“Mixed 

Knowledge 
Layer”

MLP

SFR

Lines location

z (PDF)

Learning through multi-task training



Residual blocks with convolutional layers

1d convolution scheme

12000 

chan

Residual learning

He+15 (ResNet); Yoo+22



Predictions on the a test set

• ~18000 spectra

• Same distributions as training set



texp = 2 − 8 h texp = 2 − 8 htexp = 2 − 8 h

Mstar SFRz

General Performance

σ ∼ 0.001 σ ∼ 0.15 σ ∼ 0.22

multi-task
texp = 8 h

single-task
texp = 8 h



texp = 8 htexp = 4 htexp = 2 h

|Δz | < 0.01

F(Hα) > 10−17erg/s/cm2 F(Hα) > 10−17erg/s/cm2 F(Hα) > 10−17erg/s/cm2

texp = 2 h texp = 4 h texp = 8 h

Classic methods Classic methods



Good predictions

Let’s have a look at the predictions



Bad predictions

Let’s have a look at the predictions



MC Dropout at work

Improve uncertainties with Monte Carlo Dropout

Gal+15; Gal+16



MC Dropout can’t make it

Improve uncertainties with Monte Carlo Dropout



Differences in the distributions of good & bad predictions 

|Δz | < 0.01
No emission lines

Quenched

No ongoing SF



|Δz | < 0.01

accuracy before filtering:    0.77

accuracy after filtering:    0.97


Filtered-out spectra ~27%


rms cut = 0.02


texp = 2 h



|Δz | < 0.01

accuracy before filtering:    0.9

accuracy after filtering:    0.99


Filtered-out spectra ~12%


rms cut = 0.02


texp = 8 h



Information encoded in the last embedding layers

UMAP dimensionality reduction

~100 D space

2-D projection

The model encodes information that can be described through classes and quantities that 
“make sense” and the model has not seen in training — explainable learning.

z Mstar SFR

Sersic Hα

Ks mag



There might be a domain shift between synthetic data and real observations. Domain adaptation helps filling the gap.

Future — domain adversarial training to align real data

Remember F. Belfiore’s talk (yesterday)?

Vilalta+18; Ćiprijanović+20; Huertas-Company+23; Belfiore & Ginolfi, in prep



Conclusions 
- The upcoming volume and complexity of spectral data, especially around cosmic noon, 

call for the help of deep learning.


- We designed a conv neural net trained through multi-task learning that can accurately 
obtain redshift and physical properties from galaxy spectra, handling uncertainties.


- We tested our pipeline on simulated MOONS spectra, outperforming standard spectral 
fitting tools. Our results will help in designing observational strategies for MOONS.


- We find that an a-posteriori analysis of the redshift PDF boosts performance through 
straightforward contaminant removal.



Additional slides



F(Hα) > 10−17erg/s/cm2
texp = 2 − 8 h

texp = 2 − 8 h


