EXPLORING MULTI-BAND IMAGING FOR IDENTIFYING Z > 6.5 QUASARS

A Contrastive Learning Approach Using HSC Data

<u>Laura N. Martínez-Ramírez1,2,3*,</u> Julien Wolf³, Silvia Belladitta³, Raphael Hviding³, Franz Bauer^{1,2}, Eduardo Bañados³ ,

¹ Pontificia Universidad Católica de Chile

- ² Millennium Institute of Astrophysics
- ³ Max-Planck-Institut für Astronomie *lmartinez@mpia.de

The most luminous sources of the Universe

Host galaxy

Dusty torus

Artist's impression of J0313-1806 at Z = 7.64 NOIRLab/ NSF/ AURA/ J. da Silva/ Keck [Observatory.](https://keckobservatory.org/earliest-quasar)

Accretion disk

Supermassive black hole

Why to study high-z quasars?

- SMBHs and host galaxies coevolution
- Role of QSOs in cosmic reionization
- QSOs are standardizable candles
- Bright QSOs are tracers of overdensities
- Special AGN properties at high-z

Artist's impression of J0313-1806 at Z = 7.64 NOIRLab/ NSF/ AURA/ J. da Silva/ Keck [Observatory.](https://keckobservatory.org/earliest-quasar)

4

Machine learning for Astrophysics July 9, 2024

How to find them? Band-dropouts

4

Machine learning for Astrophysics July 9, 2024

How to find them? Band-dropouts

Over 2 orders of magnitude more numerous

Finding needles in a haystack

Which one is a z=6.4 quasar?

Despite they look similar, we know they are substantially different astrophysical objects.

7

- Dropout in I and z bands (accounting for Ly-α)
- Morphology
- Artifacts removal

Examples of CR and edge flags

Repel images from different sources

RA

Machine learning for Astrophysics July 9, 2024

Contrastive learning with optical data

7

Contrastive learning with optical data

Preliminary results: quasar evolutionary track

UMAP projection z

Preliminary results: moving objects!

Object Coadded Y-band 1 epoch 2 epoch

Catalog of candidates

- Dropout in I and z bands (accounting for Ly-α)
- Morphology
- Artifacts removal

Examples of CR and edge flags

Repel images from different sources

Machine learning for Astrophysics July 9, 2024

Preliminary results: removing faint sources

Magnitude cut

Preliminary results: removing faint sources

13

Machine learning for Astrophysics July 9, 2024

Preliminary results: Parameters fine tunning

Temperature in contrastive loss function

Tensor normalization Training set

Number of neighbors

Minimum distance

-
-
-
-
- Metrics
-

```
10^{-1}
```
 8×10^{-2}

• Image scales

Number of epochs

Preliminary results: Parameters fine tunning

Temperature in contrastive loss function

Tensor normalization Training set

Number of neighbors

Minimum distance

-
-
-
-
- Metrics
-

```
10^{-1}
```
 8×10^{-2}

Number of epochs

• Image scales

14

Interpolation reprojection

Exact reprojection

Work in progress: adding IR images

The challenge: different resolutions which means non-homogeneoús image pixel-sizes

Which one is a z=6.4 quasar?

Which one is a z=6.4 quasar?

15

Which one is a z=6.4 quasar?

15

High-z QSOs are key to understand evolution of the Universe.

- Representations on the low-dimensional embedded space by contrastive learning found: a **QSO evolutionary track**, a **z ~7 QSO island** and **brown dwarfs peninsula**.
- Future work:
	- Observing runs to confirm the selection and characterize the contaminants.
	- Hyperparameters fine tunning, IR data addition and augmentation function exploration to **improve performance.**

A lot of work to do! :)

THANK YOU!

 $\overline{\mathbf{C}}$

BACK UP

Deep learning techniques in Astronomy

Huertas-Company & Lanusse (2023)

Deep learning techniques in Astronomy

Challenge 1 Small (and biased) labelled datasets

Samudre et al. (2022), Lukic et al. (2019) et al. (2021)

Why to study high-z quasars?

-
-

SMBHs and host galaxies coevolution

QSOs are standardizable candles

Figure from Risaliti & Lusso (2017)

Bright QSOs are tracers of overdensities

Special AGN properties at high-z

HaoChen, Wie & Ma (2022)

It is a self-supervised technique that trains a neural network (NN) to **project** input data onto a **low-dimensional embedding space** while minimizing the distance between similar objects.

to make the representation invariant to different views of the same objects

Contrastive learning

Main components:

HaoChen, Wie & Ma (2022)

- A stochastic data augmentation
- A NN base encoder f(.)
- A small NN projection head g(.)
- A contrastive loss function

Chen et al. (2020)

Contrastive learning

Contrastive learning

(a) Original

(f) Rotate ${90^{\circ}, 180^{\circ}, 270^{\circ}}$

(b) Crop and resize

 (g) Cutout

(c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

- A stochastic **data augmentation**
- A NN base encoder f(.)
- A small NN projection head g(.)
- A contrastive loss function

(h) Gaussian noise

(i) Gaussian blur

Main components:

Chen et al. (2020)

(j) Sobel filtering Chen et al. (2020)

Perturbations can be tuned for a science case, for example to make the representations independent to instrumental and/or selection biases.

Huertas-Company, Sarmiento and Knapen (2023)

Contrastive learning

Main components:

- A stochastic data augmentation
- A NN base **encoder f(.)**
- A small NN **projection head g(.)**
- A **contrastive loss function**

- The **encoder** extracts representation vectors from augmented data during the training, and natural data for downstream tasks.
- The **projection head** maps the representations to the space where contrastive loss is computed. It's used only during the training phase.

Hayat et al. (2021)

Self-supervised learning on SDSS images with perturbations such as rotation, cropping and extinction.

Some examples

Application to nearby galaxies from Manga survey by using maps of stellar population properties and kinematic maps.

Sarmiento et al. (2021)

High dependence on non-physical parameters

9

Search for z > 6 QSOs with DES DR2 images

Byrne et al. (2024)

Search for obscured AGNs with color catalogs based on HSC SPP, allWISE and unWISE

Some examples

CL framework zoo

Contrastive language-image pre-training

CLIP

previous batch

Combining different data types

Which one is a z=6.4 quasar?

Self-supervised contrastive learning for LBT proposal

Main improvements:

- **No CR contamination**
- **Inclusion of low-z QSOs labels**
- **Trained with more spatially distributed data**

1 normalization value for all the tensor We keep track of brighter vs faint sources

Z Y J H Ks > 21.92 mag 22.35 mag 20.64 mag > 21.92 mag 21.94 mag

Preliminary results: VHS_DR4 constraint

Self-supervised contrastive learning

216.53808851852585 -1.5044673363370582

Preliminary results: VHS_DR4 constraint

Self-supervised contrastive learning

mag cut catalog, 6x6 arcsec, individual norm

Census of accreting SMBH at z > 4 across the southern hemisphere

Query in DECaLS

