EXPLORING MULTI-BAND IMAGING FOR IDENTIFYING Z > 6.5 QUASARS

A Contrastive Learning Approach Using HSC Data

<u>aura N. Martínez-Ramírez^{1,2,3*}, Julien Wolf³, Silvia Belladitta³, Raphael Hviding³, Franz Bauer^{1,2}, Eduardo Bañados³</u>

¹ Pontificia Universidad Católica de Chile

- ² Millennium Institute of Astrophysics
- ³ Max–Planck–Institut für Astronomie *Imartinez@mpia.de

July 9, 2024

The most luminous sources of the Universe

Host galaxy

Dusty torus

Accretion disk

July 9, 2024

Jet

Artist's impression of J0313-1806 at Z = 7.64 NOIRLab/ NSF/ AURA/ J. da Silva/ <u>Keck Observatory</u>.

Why to study high-z quasars?

- SMBHs and host galaxies coevolution
- Role of QSOs in cosmic reionization
- QSOs are standardizable candles
- Bright QSOs are tracers of overdensities
- Special AGN properties at high-z

July 9, 2024

Artist's impression of J0313-1806 at Z = 7.64 NOIRLab/ NSF/ AURA/ J. da Silva/ <u>Keck Observatory</u>.

How to find them? Band-dropouts

G R

July 9, 2024

How to find them? Band-dropouts

July 9, 2024

Finding needles in a haystack

July 9, 2024

Over 2 orders of magnitude more numerous

Which one is a z=6.4 quasar?

Despite they look similar, we know they are substantially different astrophysical objects.

Contrastive learning with optical data

July 9, 2024

- Dropout in I and z bands (accounting for Ly- α)
- Morphology
- Artifacts removal

Examples of CR and edge flags

Repel images from different sources

RA

Contrastive learning with optical data

Rotation

July 9, 2024

July 9, 2024

July 9, 2024

July 9, 2024

Follow-up observations: We got telescope time (CNTAC/MAGELLAN and MPIA/LBT)

July 9, 2024

Follow-up observations: We got telescope time (CNTAC/MAGELLAN and MPIA/LBT)

July 9, 2024

July 9, 2024

Follow-up observations: We got telescope time (CNTAC/MAGELLAN and MPIA/LBT)

July 9, 2024

We got telescope time (CNTAC/MAGELLAN and MPIA/LBT)

Preliminary results: moving objects!

July 9, 2024

Object

1epoch

2 epoch

Preliminary results: removing faint sources

July 9, 2024

- Dropout in I and z bands (accounting for Ly-α)
- Morphology
- Artifacts removal

Examples of CR and edge flags

Repel images from different sources

Magnitude cut

Preliminary results: removing faint sources

July 9, 2024

Preliminary results: Parameters fine tunning

Tensor normalization

• Temperature in contrastive loss function

- Metrics

 10^{-1}

 9×10^{-2}

 8×10^{-2}

S 9 7×10⁻²

 6×10^{-2}

 5×10^{-2}

July 9, 2024

• Training set

• Image scales

• Number of neighbors

Minimum distance

• Number of epochs

Preliminary results: Parameters fine tunning

Tensor normalization

• Temperature in contrastive loss function

- Metrics

 10^{-1}

 9×10^{-2}

 8×10^{-2}

S 9 7×10⁻²

 6×10^{-2}

 5×10^{-2}

July 9, 2024

• Training set

• Image scales

• Number of neighbors

Minimum distance

• Number of epochs

Work in progress: adding IR images

The challenge: different resolutions which means non-homogeneoús image pixel-sizes

July 9, 2024

Interpolation reprojection

Exact reprojection

Which one is a z=6.4 quasar?

July 9, 2024

Which one is a z=6.4 quasar?

July 9, 2024

Which one is a z=6.4 quasar?

July 9, 2024

• High-z QSOs are key to understand evolution of the Universe.

- Representations on the low-dimensional embedded space by contrastive learning found: a **QSO** evolutionary track, a z ~7 QSO island and brown dwarfs peninsula.
- Future work:
 - Observing runs to confirm the selection and characterize the contaminants.
 - Hyperparameters fine tunning, IR data addition and augmentation function exploration to improve performance.

A lot of work to do! :)

THANK YOU!

BACK UP

Deep learning techniques in Astronomy

Model			CNNs	Enc
Application			CIVINS	Enc
1. Computer Vision	Classification	Morphology	\checkmark	\checkmark
		Strong Lenses	✓*	∕*
		Transients		
	Segmentation			∕*
2. Galaxy Properties		Photoz	\checkmark	
		Structure	✓*)	
		Stellar Populations	✓*	
		Lensing	✓*	
		Physical Processes	✓*	
		Dark Matter	✓*	
3. Discovery		Visualization	\checkmark	\checkmark
		Outliers	\checkmark	\checkmark
		Laws		
4. Cosmology		Emulation	✓*	\checkmark^*
		Cosmological inference	✓*	

Deep learning techniques in Astronomy

Application			CNNs	Enc
1. Computer Vision	Classification	Morphology	\checkmark	\checkmark
		Strong Lenses	×*	\checkmark
		Transients		
	Segmentation			\checkmark

Challenge 1 Small (and biased) labelled datasets

Solution 1.A Transfer Learning Solution 1.B Simulated dataset Solution 1.C Self-supervised learning		Domínguez Sánchez et al. (2019), Sa Jacobs et al. (2017), Vega-Ferrero et Hayat et al. (2021)									
						Solution 1.D Active Learning and similar		Walmsley et al. (2020)			
								Dark Matter	×*		
	3. Discovery	Visualization	\checkmark \checkmark								
		Outliers	\checkmark \checkmark								
		Laws									

	Laws		
4. Cosmology	Emulation	\checkmark^*	\checkmark^*
	Cosmological inference	\checkmark^*	

	Supe	ervised	U	Jnsuper	vised
- -	Gene.	BNN	RNN	Trans.	GNN
k:					
			$\checkmark^{*)}$	$\checkmark^{*)}$	
k	\checkmark^*				

, Samudre et al. (2022), Lukic et al. (2019) o et al. (2021)

Huertas-Company & Lanusse (2023)

Why to study high-z quasars?

• SMBHs and host galaxies coevolution

- Special AGN properties at high-z

July 9, 2024

• QSOs are standardizable candles

Figure from Risaliti & Lusso (2017)

• Bright QSOs are tracers of overdensities

It is a self-supervised technique that trains a neural network (NN) to project input data onto a low-dimensional embedding space while minimizing the distance between similar objects.

to make the representation invariant to different views of the same objects

July 9, 2024

HaoChen, Wie & Ma (2022)

HaoChen, Wie & Ma (2022)

July 9, 2024

Chen et al. (2020)

Main components:

- A stochastic data augmentation
- A NN base encoder f(.)
- A small NN projection head g(.)
- A contrastive loss function

(a) Original

(f) Rotate $\{90^{\circ}, 180^{\circ}, 270^{\circ}\}$

(b) Crop and resize

(g) Cutout

(c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(h) Gaussian noise

(i) Gaussian blur

(j) Sobel filtering Chen et al. (2020)

Perturbations can be tuned for a science case, for example to make the representations independent to instrumental and/or selection biases.

Huertas-Company, Sarmiento and Knapen (2023)

Main components:

- A stochastic data augmentation
- A NN base encoder f(.)
- A small NN projection head g(.)
- A contrastive loss function

- The **encoder** extracts representation vectors from augmented data during the training, and natural data for downstream tasks.
- The **projection head** maps the representations to the space where contrastive loss is computed. It's used only during the training phase.

Name	Negative loss function
NT-Xent	$oldsymbol{u}^Toldsymbol{v}^+/ au - \log \sum_{oldsymbol{v} \in \{oldsymbol{v}^+,oldsymbol{v}^-\}} \exp(oldsymbol{u}^Toldsymbol{v}/ au)$
NT-Logistic	$\log \sigma(\boldsymbol{u}^T \boldsymbol{v}^+ / au) + \log \sigma(-\boldsymbol{u}^T \boldsymbol{v}^- / au)$
Margin Triplet	$-\max(oldsymbol{u}^Toldsymbol{v}^oldsymbol{u}^Toldsymbol{v}^++m,0)$

Main components:

- A stochastic data augmentation
- A NN base encoder f(.)
- A small NN projection head g(.)
- A contrastive loss function

Some examples

Self-supervised learning on SDSS images with perturbations such as rotation, cropping and extinction.

Application to nearby galaxies from Manga survey by using maps of stellar population properties and kinematic maps.

High dependence on non-physical parameters

Sarmiento et al. (2021)

Some examples

Search for z > 6 QSOs with DES DR2 images

'Quasar Island' DES sources × . ×× J0109[®] 💥 Literature DES Х z > 5.6 Quasars J0603 🏋 J0043 Embedding Dimension [arbitrary] 10122 This Work Х LT Dwarfs × J0203 √ _ J0008 I Embedding Dimension [arbitrary]

Byrne et al. (2024)

Search for obscured AGNs with color catalogs based on HSC SPP, allWISE and unWISE

CL framework zoo

Contrastive language-image pre-training

CLIP

Combining different data types

Huertas-Company, Sarmiento and Knapen (2023)

Which one is a z=6.4 quasar?

July 9, 2024

Self-supervised contrastive learning for LBT proposal

1 normalization value for all the tensor We keep track of brighter vs faint sources

Main improvements:

- No CR contamination
- Inclusion of low-z QSOs labels
- Trained with more spatially distributed data

Preliminary results: VHS_DR4 constraint

Υ

20.64 mag

J

Η

July 9, 2024

> 21.92 mag

Self-supervised contrastive learning

216.53808851852585 -1.5044673363370582

Preliminary results: VHS_DR4 constraint

July 9, 2024

Self-supervised contrastive learning

mag cut catalog, 6x6 arcsec, individual norm

Query in DECaLS

