

Neural network for improving the flux density estimations in polarization of compact sources

Laura Bonavera ICTEA – University of Oviedo

<mark>9 July 2024</mark>

Point Sources

Distant galaxies seen as point-like objects through the observational beam

Point Sources

> Astrophysical interest

Contaminant to CMB recovery (removing or mask)

Planck 2015 XXVI

Neural Network approach

Looking for:

- Better performance
- No ringing
- No border effect
- No bk power spectrum estimation
- More flexible and automatic

Realistic simulations needed:

- Patches of the sky
- CMB signal
- Galactic thermal dust and synchrotron emission
- PS radio (label) and IR background
- Instrumental white noise

PoSelDoN - Point Source Image Detection Network

120

0

50

100

Bonavera+21

50

100

0

6 conv layers: 8-16-64-128-256-512 feature maps 6 deconv layers: 256-128-64-16-8-1 feature maps Paddding Same, Leaky ReLU, MSEloss, 50 epochs, ... Simulations @217 GHz128 x 128 pix 50 000 training set (total & PS) 5 000 validation set

• above 4 $\sigma_{
m MHW2}$ (MHW2) $_{
m 120}$ ·

MultiPoSeIDoN – Multifrequency PoSeIDoN

20

80

100

120

20

40

60

80

100

120

20

40

60

80

100

120

25 50 75

0

6 conv: 9-18-72-144-288-576 feature maps 6 dec onv: 288-144-72-18-9-3 feature maps 500 epochs Multifrequency simulations @143, 217 & 353 GHz 128 x 128 pixels (90") PS flux density scaling w/ freq 50 000 training set (total & PS) 5 000 validation set

Catalogue: searching peaks (i.e. local maxima)

- NN above 60 mJy threshold
- MTXF 4σ

- 0.10

0.09

100 125

100

12

25 50

100

125

75

0.010

0.005

000

120

25 50

100

125

75

Casas+22a

POSPEN - POint Source Polarization Estimation Network

Casas+23

1st block read the input Five convolutional blocks of 8-32-64-128-256 filters

two layers of 128 and 1 neurons converting info to numerical values

POSPEN - simulations

Simulation in P, Q and U:

- Polarization Planck-like simulations
- @ single frequencies (7 channels)
- a central injected PS (non-blind method)
- PS, Radio and IR background following Bonavera+17a,b
- CMB based on the one recovered by SEVEM (PLA)
- Thermal dust and synchrotron based on FFP10 simulations (PLA)
- White noise @ Planck levels
- 32 × 32 pixels of 90"
- Galactic cut at 30 deg

Example of 3 simulations @ 217 GHz in polarization

POSPEN - train

Training in P, Q and U separately:

- 15000 sims as training set (label: PS polarization flux density)
- The best model (smallest loss function) is generally obtained at a lower epoch in P WRT Q and U
 Validation in P, Q and U:
- 1000 sims as validation set

Freq [GHz]	P min loss epoch	Q min loss epoch	U min loss epoch
30	331	498	473
44	145	493	488
70	224	479	489
100	356	272	446
143	316	281	267
217	95	410	343
353	219	316	352

Epoch @ minimum loss value (training epochs 500)

- Unbias by interpolating with the relative error curve
- > Trained in P (left) and trained in Q & U and $P_{QU} = \sqrt{Q^2 + U^2}$ (right)
- Done for the 7 Planck channels
- P better WRT P_{QU}

Polarization angles after a flux cut

- No bias issue with Q and U ratio
- Few outliers
- Dispersion used to compute errors

POSPEN applied to validation set with injected PS simulated using Π (polarization degree) following a lognormal distribution (top) and a gaussian distro (bottom)

POSPEN is able to recover the shape of the gaussian distribution, even if trained with a lognormal one

T, P, Q and U patches of PCCS2 srcs @ 217 GHz

Some very bright pixels (hot pixels?)

POSPEN @ the PCCS2 positions

- Trained in P
- ➤ Trained in Q & U and $P_{QU} = \sqrt{Q^2 + U^2}$
- **PCCS2** and P_{QU} in agreement
- Are both overestimating flux densities?

POSPEN @ the PCCS2 positions polarization angle: $\psi_{QU} = \frac{1}{2} \tan^{-1}(-U/Q)$

- agreement with the PCCS2
- according to validation, there is no bias issue

List of total PS in the PCCS2, PS w/ polarization estimations in PCCS2, PCCS2 PS confirmed w/ POSPEN, POSPEN new PS, PSPEN total estimated PS in the 7 channels

Considering all channels, increase in the polarization estimations of approx a factor 3

Freq [GHz]	PCCS2 I	PCCS2 P	confirmed by POSPEN	POSPEN new	POSPEN tot
30	1560	114	61	302	363
44	934	30	20	52	72
70	1296	34	23	8	31
100	1742	20	11	35	46
143	2160	25	19	93	112
217	2135	11	9	64	73
353	1344	1	1	8	9

Conclusions

NN with simulations:

- Lower flux densities limit: larger number of detected PS
- Smaller number of spurious detections
- Not a "filter" (no Fourier space), then no ringing or border effects
- Multi-frequency methodology in T, very important for spectral characterization of galaxies
- Estimation of polarization angle for even not so bright PS
- Recovery of the correct I distribution

POSPEN for Planck:

- Not stightforward application
- Discrepancies bw P_{NN} & P_{planck}(P_{QU})?
- (hot pixels issue?)
- Hundreds of new sources in P
- NO correlation T vs P spectral indices
- Polarization angle in agreement with PCCS2
- $>\Pi$ in agreement with previous results