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Machine
Learning Papers
In Astronomy




- trust, robustness, interpretability
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6 Rules for Constructing
Impactful Machine Learning
iIn Astronomy

Interactive Discus 'Sion!

Today



Box Loop for Machine Learning in Astronomy

Revise Model

Training
Data

Conceptualise Model

- Why does this problem
exist, and what do good
solutions look like? (Rule 2.1)
- What is the current best
domain reference? (Rule 2.1)
- How does a potential ML
solution fit into the broader
context of existing solutions?
(Rule 2.1)

- What is the target problem,
and what data can be used to
solve it? How can model
inputs be derived from
idealised or realistic
observations? (Rule 2.4)

Adapted from: Blei (2014)

Build and Test Model

- What is the added value of
the current best ML solution
compared to the standard in
the field? (Rule 2.1)

- What trade-offs does my
new solution require in terms
of interpretability? (Rule 2.1)
- Where can | apply best
practices from the ML
community, and where do
these not make sense? (Rule
2.2)

- How can | best diagnose
and visualise the model and
its outputs? (Rule 2.3)

Criticise Model and
Training Data

- What data sets can we
confidently assume the
model will perform well on?
(Rule 2.4)

- How confident are we that
the training data matches the
target data? (Rule 2.4)

- Where does the model's
scope stop, and which
conclusions are scientifically
valid? (Rule 2.4)

- Have | described the
model's limitations in
sufficient detail? (Rule 2.4)

Apply Model and Share

Results
- Does the paper include a
nuanced discussion of the
model's capabilities and
limitations? (Rules 2.1-2.4)
- Does the paper include
insights on the process of
machine learning on
astronomical data? (Rule 2.5)
- Have | included typical
failure modes that will help
other researchers? (Rule 2.5)
- Have | made my code and
data publicly available as
much as institutional and

collaboration requirements
allow? (Rule 2.6)




D1d you write a paper that showcases a rule? Do you

know someone who did? Please send it to mel

d.huppenkothen@sron.nl



. Compare against a domain reference and put

result into larger context
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Key reasons for
Implementing

machine learning
models 1n
astronomy

1. Decrease the computational time and costs
associated with scalability to larger data sets
and samples

2. |Improve the robustness or precision of
solutions to astrophysical questions

3. Facilitate model sharing and automation to
make collaboration easier

4. Implement machine learning models for
problems where no other solution exists

What value 1s added by implementing a
machine learning model, compared to the

trade-offs (e.g. interpretability, biases in
population inference)




cINN (MAP) vs. Template fitting (lit)

Literature CINN
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Conditional Invertible Neural Networks for
enhanced analysis of young, low-mass stars in Trumpler 14

Da Eun Kang



cINN (MAP) vs. Template fitting (lit)
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- Adopt best practices from the ML community




Use best practices In
machine learning to

establish trust in
results
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Designing and preparing data sets
Choosing algoriothms

Choosing evaluation metrics

H W e

Exploring and reporting outputs
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Designing and preparing data sets
Choosing algoriothms

Choosing evaluation metrics

» Wb e

Exploring and reporting outputs

Use best practices In
machine learning to

Machine learning is not just a set of algorithms,
but a community of practice with rules,

establish trust in
results

conventions and best practices to guard against
challenges (e.g. overfitting, lack of generalisation)




K-fold cross-validation

* We only have 101 finetuning samples, or ~20 samples for testing

*Train the model k times, reserving different data for testing each
time

[ Full dataset ]

I Attiens Canara | AAL AACTD



- Interpret, Diagnose and/or Visualise Models




Develop and/or apply
Innovative diagnosis

and evaluation
techniques
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e Monitor in-distribution validation of ML
models

e Checkforoutliers

e Visualize model output beyond summary

statistics
]?evelop .and/ .01‘ app!y e Select performance metrics according to the
Innovative diagnosis problem being solved

and evaluation
techniques

ML models have numerous algorithmic
failure modes, and blindly trusting their

output may lead to biased inferences about
astrophysical problems
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. Explore limits and scope of the model




What problems can
we confidently

assume the model will
perform well on?
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e Determine target problem and data with which it can be
solved

e Generate training data from idealised or realistic
observations

e Select appropriate modeling and testing methodologies
in alignment with scientific use case (e.g. changes in
noise)

e |dentify limits of the model scope: e.g. causal versus
What problems can correlational

we COIlfldeIlﬂY e Don'tforgetabout rare, previously unseen events!

assume the model will

perform well on? In many situations where training data is

imperfect or incompletely understood, it may be

1mpossible to build unbiased models:
transparency if crucial to be able to apply results




Did we successfully align domains?

Tsne representation of the input Tsne representation of the embeddings
space space

HIl 100 -

100 -

50 -
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_50 - =50 -
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-100 -

Francesco Belfiore’s talk yesterday: A domain-adaptation , , . . :
-100 ~50 0 50 100

approach to classify ionised nebulae in nearby galaxies

» rancesco Belfiore



- Share and Discuss L.essons L.earned
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Learned to Avoid
Duplication
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1. Adapting ML to astronomical problems involves both
successes and informative failures

Publications are biased towards successes

Some models may never get published for not reaching
thresholds over previous approaches

4. Write manuscripts that are pedagogical as well as
scientific

Share Lessons

[LLearned to Avoid

_ _ Biasing publication exclusively towards
Duplication

successful approaches could discourage model

exploration to avoid risk of failure, an deprive
the literature of these examples




ICBINB @ NeurlPS2021

Call for Papers Guidelines Schedule Accepted Talks Panel Breakouts PC CoC Awards Feedback

| (Still) Can't Believe It's Not Better! Workshop

ICBINB@NeurlPS 2021 - A Workshop for "beautiful” ideas that *should™ have worked




: Make Software and Data Publicly Available
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1. Enables others to reproduce research results, verify
correctness

2. Enables reuse of model architectures, loss functions or
whole pipelines

3. Provides a foundation for new projects

But: data and model sharing rights might be
complicated!

Consider Making

Code, Models and
Data Public!

Benchmarking new models against existing

ones, and publishing the results, are best done
when existing models are public!




Application
for enriching large dark matter simulations with baryons
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EMBER: emulating
baryons from dark
matter-only simulations
over cosmic time

Bernadini et al (2022)

See talk on Wednesday morning!
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EMBER: emulating
baryons from dark
matter-only simulations
over cosmic time

Bernadini et al (2022)

See talk on Wednesday morning!
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(1] README Z[z MIT license

o . EMulating Baryonic EnRichment

About The Project

This repository provides the network implementation and training routines for the paper "From EMBER to FIRE:

predicting high resolution baryon fields from dark matter simulations with Deep Learning". The code is written
using the Tensorflow2 AP, is easy to use and supports parallel training on multiple GPUs. Simulations are part
of the FIRE project.

Networks

Pretrained networks and prediction maps can be found at Gooagle Drive.

Prerequisites and Usage

Note that the you may need to modify the code for your specific project application.

10 cMpc / h




are meant to be




It's your turn!



Interactive

Activity
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Interactive

Activity

Think on your own
(2 minutes)

Discuss with a partner
(4 minutes)

Discuss in group of 4
(8 minutes)

Share with full group
(6 minutes)

Which of the rules resonate with you?
Which do you disagree with? Why?
What did we miss?

. Compare against a domain reference and put
result into larger context

. Adopt best practices from the ML community

. Interpret, Diagnose and/or Visualise Models
. Explore limits and scope of the model
. Share and Discuss Lessons Learned

. Make Software and Data Publicly Available



Interactive a. Which of the rules resonate with you?

b. Which do you disagree with? Why?

c. Whatdid we miss?

Activity:
Share-Out

Notes
e Start here
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