
d.huppenkothen@sron.nl

Constructing Impactful Machine 
Learning Research for Astronomy 

D A N I E L A  H U P P E N K O T H E N  

M I C H E L L E  N T A M P A K A

Matthew Ho, Morgan Fouesneau, Brian Nord, J.E.G. Peek, Mike 

Walmsley, John F. Wu, C. Avestruz, Tobias Buck, Massimo Brescia, 

Douglas P. Finkbeiner, Andy D. Goulding, T. Kacprzak, Peter Melchior, 

Mario Pasquato, Nesar Ramachandra, Yuan-Sen Ting, Glenn van de Ven, 

Soledad Villar, V.A. Villar, Elad Zinger

arXiv:2310.12528



Why?



Machine 
Learning Papers 

in Astronomy

Best Practices for ML in Astronomy 3

Figure 1. Number of refereed publications per month that include the terms “machine learning” or “artificial intelligence” in
the title (orange) or abstract (blue) in the top 25 astronomy and astrophysics-related journals.

are already widely adopted throughout the community.
Nevertheless, we think it is important to spell out these
practices as a starting point for discussion among ML
experts and as guidance to researchers starting out ap-
plying ML to their own astronomical challenges.
In Figure 2, we present an overview of the rules and

key questions that researchers might ask themselves
throughout a project’s life cycle. The schematic bor-
rows from George Box’s notion of research as an itera-
tive process (Box 1976) and the interpretation by Blei
(2014) in the context of exploratory data analysis and
latent variable models. In this view, critiquing and re-
vising statistical models is a key component of scientific
practice, and we suggest a similar approach to build-
ing and validating ML models. This Figure is intended
for researchers working on a project, and in Appendix
A we present an accompanying quick-start guide for re-
searchers refereeing relevant manuscripts or proposals.

2.1. Compare against a domain reference and put
results into the larger context

The goal of most applications of machine learning in
astronomy is to infer astrophysical knowledge. Major
motivations for implementing machine learning meth-
ods include (1) decreasing the computational time and
costs associated with scalability to larger data sets and
samples; (2) improving the robustness or precision of so-
lutions to astrophysical questions; (3) facilitating model
sharing and automation to make collaboration easier;
(4) implementing machine learning models for prob-
lems where no other solution exists. Because scientific
progress is inherently an incremental process where new
results are built upon previous findings and methods,

all but the last motivation imply that a corpus of work
exists on the topic at hand.
Explicitly evaluating new ML methods against tradi-

tional ones is vital to establish trust within the astro-
nomical community. This might start even before be-
ginning a particular project, as part of project scoping,
by evaluating the following questions: Why does this
problem exist, and what do good solutions look like?
How would an ML solution fit into the broader context
of existing solutions? How do its expected strengths
and weaknesses compare to alternatives? What would
someone need to do to put this into practice? While an
evaluation of ethical and privacy concerns is rarely re-
quired in the context of projects involving astronomical
data, we note that this is not the case in projects and
fields where ML outputs are used for decision-making
that a↵ects human lives. In these situations, an impact
assessment focused on the ethical and privacy implica-
tions should be at the heart of project development.
During the course of the research, results derived with

a machine learning model should be compared to the
current standards in the field by considering what value
is added by deploying a machine learning model. This is
an especially important consideration in the context of
interpretability. An ML model may be less interpretable
than the methods it is being compared to, especially
when those methods are motivated by the underlying
physics of the problem. It is therefore important to
discuss how a new ML model improves on the current
best approach while also considering scenarios where a
more traditional method might be a more appropriate
solution, e.g. because interpretability is particular im-
portant for a specific application or because the new
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Figure 2. Box’s loop for ML in astronomy.

model underperforms for specific data sets or use cases.
Researchers should clearly and quantitatively highlight
the benefits of the new model within the scope of the
larger astrophysical question and the context of alterna-
tive approaches to the problem.
The relevant context may include not only the specific

problem at hand but also how the ML approach might
facilitate (or introduce additional bias into) larger-scale
analyses that use the outputs of the ML model, e.g. in
the context of population inference or cosmology. For
example, ML might be used to estimate the masses of
galaxy clusters in the context of estimating the Halo
Mass Function (HMF). One might then ask how a par-
ticular improvement in estimated cluster masses a↵ects
the survey estimation of the HMF? And how would the
researchers ensure that the cluster and galaxy selection
function in the training set is equal to that of the survey?
As a concrete example for an application of the con-

cepts presented in this rule, Matzeu et al. (2022) present
a neural network surrogate model for a 2.5D radiative
transfer model calculating the X-ray emission from ac-
cretion disk winds. In a traditional approach, computing
an X-ray spectrum from a set of astrophysical parame-
ters and initial conditions requires several hours of com-
puting time. The surrogate model presented in the pa-
per can do the same in a fraction of a second. They com-
pare their emulator to the current standard model (a fast
model based on grid-based linear interpolation) on both
simulated data and XMM-Newton observations. This
comparison pits the surrogate model against the current

standard approach within the context of an end-to-end
analysis, and includes the comparison of full posterior
distributions using both models. This paper’s in-depth
discussion is a good example of the concepts advocated
in this rule: it includes a clear problem statement and
motivation for implementing a machine learning solu-
tion, a comparison with the standard approach on both
simulated and real data, and a discussion of the advan-
tages and shortcomings of the new approach.
To summarize, machine learning should not be used

for machine learning’s sake; the reason for implementing
an ML solution should be clearly and prominently artic-
ulated. To ensure that the research findings are useful
to the broader astronomical community, the advantages
of the technique should be highlighted, and the results
should be carefully compared against the work flow and
performance of a conventional method.

2.2. Adopt best practices from the ML community

Though “machine learning” as a term is often reduced
to the application of a specific class of algorithms to data
sets and problems, in practice, the successful use of these
methods on real-world problems encompasses more than
fitting a model to data. In the same way astronomers
build data processing pipelines to turn raw data arriving
from telescopes into science-ready data products, ML
should be understood as an umbrella term not only for
a class of algorithms, but also for a set of rules, con-
ventions, and best practices around implementing these
models and training them on data.

Box Loop for Machine Learning in Astronomy

Adapted from: Blei (2014)



Did you write a paper that showcases a rule? Do you 
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What value is added by implementing a 
machine learning model, compared to the 

trade-offs (e.g. interpretability, biases in 
population inference)
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1. Designing and preparing data sets

2. Choosing algoriothms

3. Choosing evaluation metrics

4. Exploring and reporting outputs

Machine learning is not just a set of algorithms, 
but a community of practice with rules, 

conventions and best practices to guard against 
challenges (e.g. overfitting, lack of generalisation)
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• Check for outliers

• Visualize model output beyond summary 
statistics

• Select performance metrics according to the 
problem being solved

ML models have numerous algorithmic 
failure modes, and blindly trusting their 

output may lead to biased inferences about 
astrophysical problems
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Figure 6. PHANGS multi-wavelength pixels partitioned into 6 groups using dimensionality reduction and clustering algorithms. The
top left panel shows the two-dimensional embedding by UMAP of the input dataset, which includes 24 007 PHANGS pixels with 13 measured
features that trace the stellar population, gas, dust, and star formation properties. Each point in the two-dimensional space represents a pixel
from one of the galaxies we consider. The objects are divided into groups using the Hierarchical Clustering algorithm with the average linkage,
and each point is color-coded according to its assigned group. The other three panels show the spatial distribution of the six groups, which map
to large-scale coherent structures within the galaxies. In these panels, the grayscale background represents the H↵ surface brightness, and the
black contours represent the CO emission.

PHANGS-ML 11

Figure 4. Our adopted two-dimensional UMAP embedding color-coded by the features in the input dataset.

18

Figure 8. Distribution of the identified groups in the PAH band ratios plane. The panels show the distribution of pixels in the PAH 11.3/7.7
µm versus 3.3/11.3 µm plane. The top left panel shows the distribution of all the pixels we consider using gray-scale color-coding, and the
rest of the panels show the distributions in each individual group. While the gray-scale colormap on top represents the 2D histogram counts in
a linear scale, the individual group panels show the counts in a logarithmic scale. The black contours represent the distribution of all the pixels
we consider, and they are the same in the different panels. The crosses represent the 16th, 50th, and 84th percentiles of the distributions in each
of the band ratios for each group. Details on the classification of each group can be found in section 4.1.

4.2. Close connection between the heating of PAHs and the
ionization of the warm ionized gas

We identify significant and tight correlations between dif-
ferent PAH band and optical line ratios (see the full corre-
lation matrix in Figure B3 in the appendix). These correla-
tions are seen across the entire dataset, extending from the
star-forming regions and the ISM, through the diffuse ion-
ized gas, to the AGN-photoionized gas. The correlations
are also detected in individual groups in which the dynam-
ical range is large enough. Ionizing radiation is expected to
destroy PAHs, and observations suggest much weaker PAH
emission in regions dominated by ionized gas, such as HII re-
gions (e.g., Chastenet et al. 2019, 2023a; Chown et al. 2023;
Egorov et al. 2023; Lee et al. 2023; Peeters et al. 2023; and
reviews Tielens 2008; Li 2020), though at our spatial reso-
lution, the PHANGS pixels include contributions from both.
These correlations suggest a strong connection between the
heating of PAHs and the ionization of the warm ionized gas
on 150 pc scales.

In Figure 9 we show the PAH band ratio 11.3/7.7 versus
the optical line ratios [O III]/H�, [N II]/H↵, [S II]/H↵, and

[O I]/H↵, for the PHANGS pixels considered in our analysis.
The 11.3/7.7 band ratio shows strong correlations with all
of them. In figure 10 we show the PAH band ratio 3.3/11.3
versus the optical line ratios. The correlations show a larger
scatter than those of the 11.3/7.7 band ratio, but they extend
over twice as large a dynamical range. In addition, there is a
clear difference in the relation seen for the lower ionization
transitions traced by [S II]/H↵ and [O I]/H↵ compared to the
higher ionization transitions [N II]/H↵ and [O III]/H�, with
the former showing stronger correlations with the 3.3/11.3
band ratio.

Since the PAH band ratios are based on the broad band fil-
ter ratios F1130W/F770W and F335MPAH/F1130W, we first
ensure that these correlations are not due to varying contribu-
tions of dust continuum emission to the F1130W filter flux.
Since the F1000W filter likely has a large contribution from
PAHs under most conditions in the PHANGS galaxies (e.g.,
Leroy et al. 2023), we use the F2100W filter flux to trace the
dust continuum emission. If the observed correlations are
due to a varying contribution of hot dust emission, we expect
to find significant correlations between F2100W/F770W and

PHANGS-ML: dissecting 
multiphase gas and dust 
in nearby galaxies using 
machine learning 

Baron et al (2024)
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solved
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observations

• Select appropriate modeling and testing methodologies 
in alignment with scientific use case (e.g. changes in 
noise)

• Identify limits of the model scope: e.g. causal versus 
correlational

• Don’t forget about rare, previously unseen events!

In many situations where training data is 
imperfect or incompletely understood, it may be 

impossible to build unbiased models: 
transparency if crucial to be able to apply results



Francesco Belfiore’s talk yesterday: A domain-adaptation 
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Rule 5: Share and Discuss Lessons Learned



Share Lessons 
Learned to Avoid 

Duplication



Share Lessons 
Learned to Avoid 

Duplication

1. Adapting ML to astronomical problems involves both 
successes and informative failures



Share Lessons 
Learned to Avoid 

Duplication

1. Adapting ML to astronomical problems involves both 
successes and informative failures

2. Publications are biased towards successes



Share Lessons 
Learned to Avoid 

Duplication

1. Adapting ML to astronomical problems involves both 
successes and informative failures

2. Publications are biased towards successes

3. Some models may never get published for not reaching 
thresholds over previous approaches



Share Lessons 
Learned to Avoid 

Duplication

1. Adapting ML to astronomical problems involves both 
successes and informative failures

2. Publications are biased towards successes

3. Some models may never get published for not reaching 
thresholds over previous approaches

4. Write manuscripts that are pedagogical as well as 
scientific 



Share Lessons 
Learned to Avoid 

Duplication

1. Adapting ML to astronomical problems involves both 
successes and informative failures

2. Publications are biased towards successes

3. Some models may never get published for not reaching 
thresholds over previous approaches

4. Write manuscripts that are pedagogical as well as 
scientific 

Biasing publication exclusively towards 
successful approaches could discourage model 
exploration to avoid risk of failure, an deprive 

the literature of these examples





Rule 6: Make Software and Data Publicly Available



Consider Making 
Code, Models and 

Data Public!



Consider Making 
Code, Models and 

Data Public!

1. Enables others to reproduce research results, verify 
correctness 



Consider Making 
Code, Models and 

Data Public!

1. Enables others to reproduce research results, verify 
correctness 

2. Enables reuse of model architectures, loss functions or 
whole pipelines



Consider Making 
Code, Models and 

Data Public!

1. Enables others to reproduce research results, verify 
correctness 

2. Enables reuse of model architectures, loss functions or 
whole pipelines

3. Provides a foundation for new projects



Consider Making 
Code, Models and 

Data Public!

1. Enables others to reproduce research results, verify 
correctness 

2. Enables reuse of model architectures, loss functions or 
whole pipelines

3. Provides a foundation for new projects

4. But: data and model sharing rights might be 
complicated!



Consider Making 
Code, Models and 

Data Public!
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Benchmarking new models against existing 
ones, and publishing the results, are best done 

when existing models are public!
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Figure 1. Illustration of our machine learning pipeline. We train neural networks on small cosmological volumes and zoom-in simulations with high resolution
to predict baryonic counterparts from dark matter inputs. We investigate the upsampling capabilities of the networks by training individually on di�erent dark
matter input resolutions (indicated on the left in the training figure), while the target fields are always fixed to the highest resolution (see section 4.5 for details).
As indicated on the right, the trained neural networks can then be applied to large dark matter only simulations (e.g. the 100 ⌘

�1Mpc box used in this work) to
enrich them with the specified baryon fields at low computational cost.

not follow the dynamical interaction of dark matter and baryons and
require extensive parameter calibrations (see e.g. Knebe et al. 2015;
Chuang et al. 2015, for a detailed comparison of di�erent models).

To date, numerical hydrodynamical simulations o�er the most
principled approach to model and study in depth the intrinsic
physical properties of systems comprised of dark matter and baryons
(e.g. Bryan & Norman 1998; Springel & Hernquist 2003; Springel
et al. 2005; Kere� et al. 2005; Vogelsberger et al. 2012; Hopkins et al.
2014; Wetzel & Nagai 2015; Feldmann & Mayer 2015; Feldmann
et al. 2016; Wetzel et al. 2016; Feldmann et al. 2017; Pillepich
et al. 2017; Hopkins et al. 2018; Davé et al. 2019). Simulations
that consider only the physics of gravity are straightforward;
it is baryonic physics, and its backreaction on the dark matter
distribution that presents the most substantial challenge at present.
The brute-force computation o�ers a better understanding of the
dark matter and gas dynamics compared to SAMs (Hirschmann et al.
2011). However, their computational cost, being the main limiting
factor, currently prohibits simulations of very large volumes with
arbitrarily high resolution (Schaye et al. 2010, 2015; Vogelsberger
et al. 2014; Khandai et al. 2015; Feng et al. 2016; Davé et al. 2016;
Nelson et al. 2017, 2019). The trade-o� between simulated box
size and particle mass resolution is important, since it limits the
range of scales a single simulation can cover (e.g. Katz & White
1993; Knebe & Domínguez 2003; Sirko 2005; Romeo et al. 2008).
Cosmological zoom-in simulations try to mitigate this problem by
preselecting a collapse region, which is then enriched in resolution
(e.g. Bertschinger 2001; Naab et al. 2009; Feldmann et al. 2011;
Hahn & Abel 2011; Hopkins et al. 2014; Anglés-Alcázar et al. 2014;
Onorbe et al. 2014). In this way, very high resolution simulations of
individual haloes of di�erent masses are possible, but the technique
still su�ers from large computational costs and data storage. The
major aim of the present work lies in exploring a methodology based
on Deep Learning models to overcome this numerical trade-o�
by enriching cosmological simulations of dark matter with high
resolution baryonic information at much reduced computational cost.

Feedback processes (e.g. stellar and AGN feedback) regulate star
formation by expelling gas back into the surroundings of galaxies
(Anglés-Alcázar et al. 2017a; Hopkins et al. 2018; Li et al. 2018;
Biernacki & Teyssier 2018; Valentini et al. 2019). As a result, the
complicated phase-space and temperature distribution of gas around
galaxies inherently contains information about the feedback physics
(Barnes et al. 2018; Chabanier et al. 2020). Thus, studying absorption
signatures of neutral hydrogen and metal lines in the absorption spec-
tra of background quasars is important to reveal the major physical
processes that drive galaxy formation.

Galaxies accrete large quantities of fresh metal-poor gas from the
intergalactic medium (IGM) to form new stars. This cosmological
gas supply has a strong dependence on redshift and halo mass. Gas
in massive haloes is shock heated and requires a long time to cool
and settle into the galaxy disk whereas cold gas streams can reach
the disk directly in less massive haloes (e.g. Kere� et al. 2005; Dekel
& Birnboim 2006; Brooks et al. 2009; Faucher-Giguère et al. 2011;
Woods et al. 2014; Ho et al. 2019; Stern et al. 2020). This connec-
tion between galaxies and gas reservoirs within their parent halo is
therefore an important aspect in galaxy formation models.

Modelling the evolution of galaxies requires to understand the
evolution of the two main baryonic constituents, stars and gas. Both
simulations and observations have led to progress in understanding
the evolution of stellar properties such as e.g. the star formation
rate (SFR) and the main sequence over cosmic times (Karim et al.
2011; Guglielmo et al. 2015; Hwang et al. 2019; Tacconi et al.
2020; Feldmann 2020). The understanding of the dense molecular
phase of the interstellar medium (ISM) has also improved through
observational surveys of H2 abundances with CO tracing techniques
(e.g. Bolatto et al. 2013; Tacconi et al. 2018; Pavesi et al. 2018;
Decarli et al. 2019).

In contrast, much less is known about atomic hydrogen (HI), es-
pecially at intermediate to high redshifts. Simulations predict that a
significant fraction of the accreted gas in haloes is relatively cold and
thus contains large amounts of atomic hydrogen (Kere� et al. 2005;
Fumagalli et al. 2011; Faucher-Giguère & Kere� 2011; Fumagalli
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1. Compare against a domain reference and put 
result into larger context 

2. Adopt best practices from the ML community 

3. Interpret, Diagnose and/or Visualise Models  

4. Explore limits and scope of the model 

5. Share and Discuss Lessons Learned 

6. Make Software and Data Publicly Available
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a. Which of the rules resonate with you?  

b. Which do you disagree with? Why? 

c. What did we miss?

Notes 

• Start here 
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