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New observations lead to new discoveries

Gravitational waves & merging black holes
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The astronomical data revolution

THE SPECTRA OF NARROW-LINE SEYFERT 1 GALAXIES!
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ABSTRACT

Measurements are presented of a group of active galactic nuclei with all the properties of Seyfert 1 or 1.5
galaxies, but with unusually narrow H 1 lines. They include Mrk 42, 359, and 1239 (previously studied by
other authors) as well as Mrk 493, 766, 783, and 1126. One other somewhat similar object, Mrk 1388, is also
included in the discussion; measurements of its spectrum have been published elsewhere. For these objects,
narrow-line widths, relative intensities of the emission lines, etc., are all similar to those in other Seyfert 1
galaxies. Some, in particular Mrk 493 and Mrk 42, have relatively strong Fe 11 emission; in others, especially
Mrk 359, 783, and 1126, it is quite weak.

As a group, these narrow-line Seyfert 1 galaxies have approximately normal luminosities. Their Hp
emission-line equivalent widths are, on the average, somewhat smaller than in typical Seyfert 1’s. Overall,
these narrow-line Seyfert 1 galaxies show a wide variety of deviations from the properties of typical Seyfert 1
objects. They clearly demonstrate that the Seyfert phenomenon is not a simple one-parameter effect.

Subject headings: galaxies: nuclei — galaxies: Seyfert
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The astronomical data revolution

(1) Survey mode: high-quality datasets made publicly-available.
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The astronomical data revolution

(1) Survey mode: high-quality datasets made publicly-available.

(Il) Exponential increase in the number of observed sources.

® Past or current surveys: SDSS, Pan-STARRS, ZTF, DESI, Gaia.
® Near future: Rubin, Roman, Euclid, SDSS-V, SKA.

(I11) Increased information content of a given observed source

® Higher spectral; angular; or temporal resolution.

(IV) Multi-wavelength coverage by multiple surveys covering radio to
gamma-ray wavelengths.




Modern astronomical surveys produce complex and diverse datasets using
observations across the electromagnetic spectrum

HST WFC3 VLT MUSE VLT MUSE  JWST NIRCam  JWST MIRI ALMA

Observations of NGC 7496 by the PHANGS (The Physics at High Angular resolution in Nearby GalaxieS) survey.
The goal: probe the physics of gas, dust, and star formation, on scales of ~15-150 pc.

Figure from Baron et al. (2024)


https://ui.adsabs.harvard.edu/abs/2024ApJ...968...24B/abstract
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Modern astronomical surveys produce complex and diverse datasets using
observations across the electromagnetic spectrum
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Observations of NGC 7496 by the PHANGS (The Physics at High Angular resolution in Nearby GalaxieS) survey.
The goal: probe the physics of gas, dust, and star formation, on scales of ~15-150 pc.
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Figure from Baron et al. (2024) PHANGS website (includes survey papers and public datasets)


https://sites.google.com/view/phangs/home
https://ui.adsabs.harvard.edu/abs/2024ApJ...968...24B/abstract

How to analyze such complex and high-dimensional datasets?

g Model-driven or theory-driven approach A

1. Hypothesis (from theory or from a previous experiment).
2. Observations and analysis are conducted to test the hypothesis.
3. Analysis leads to new insight, often leading to new hypotheses.
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Inspired by Egorov et al. (2023)


https://ui.adsabs.harvard.edu/abs/2023ApJ...944L..16E/abstract

How to analyze such complex and high-dimensional datasets?

g Data-driven approach A

1. Statistical tools are used to visualize and dissect the high-dimensional dataset.
2. Representation reveals trends; groups; or outliers, forming a new hypothesis.
3. Analysis of the data to test the hypothesis leads to new insight.
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Data-driven approach

1. Statistical tools are used to visualize and dissect the high-dimensional dataset.
2. Representation reveals trends; groups; or outliers, forming a new hypothesis.
3. Analysis of the data to test the hypothesis leads to new insight.
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Simple manifolds in high-dimensional spaces lead to insight: the
ultimate example

Image credit: Gaia collaboration (2018)
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https://www.aanda.org/articles/aa/full_html/2018/08/aa32843-18/aa32843-18.html

Simple manifolds in high-dimensional spaces lead to insight: the
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Image credit: Gaia collaboration (2018)
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Simple manifolds in high-dimensional spaces lead to insight: the
ultimate example

Image credit: Gaia collaboration (2018)

| | | | | |
20 0B A F G K M Stellar type
05 ‘ , . .

" BO
P 1D trend / correlation )
zv 15 - i o implies fundamental
S . connection between
+ different properties. )
= .
cv R
N . F5WMWWWW~M ‘ _hﬂam sequence
© GOWWWMW
S S
O I G4
= KOWMWWW

RPN Sttt N AR i s
PO st S

0_M5 _

Gaia magnitude [mag] / stellar luminosity [Lsun]

III|IIII|IIII|IIIIII I | | | I|
3500 4000 4500 5000 5500 6000 6500 7000 7500

Wavelength [A] Gaia color /
surface temperature [K]



https://www.aanda.org/articles/aa/full_html/2018/08/aa32843-18/aa32843-18.html

Simple manifolds in high-dimensional spaces lead to insight: the
ultimate example

Image credit: Gaia collaboration (2018)

| | | | | |
20 0B A F G K M Stellar type
05 ‘ , . .

" BO
o
- 2
S ": Glant branch
n s L | 3
2 15 B
o
o B5 -
= Al t5i
ks Clusters / separate |
N [ F5wWW roups suggests different
(—U X g p gg
e | 0 curalf T T e %. .| formation channels or
s | T o e e | different physics at play.
p KOWMWWWMMW C 5 e

RPN Sttt N AR i s
PO st S

0_M5 _

Gaia magnitude [mag] / stellar luminosity [Lsun]

III|IIII|IIII|IIIIII I | | | I|
3500 4000 4500 5000 5500 6000 6500 7000 7500

Wavelength [A] Gaia color /
surface temperature [K]



https://www.aanda.org/articles/aa/full_html/2018/08/aa32843-18/aa32843-18.html

Simple manifolds in high-dimensional spaces lead to insight: the
ultimate example

Image credit: Gaia collaboration (2018)

| | | | | |
20 0B A F G K M Stellar type
05 . . - .

" BO
i)
c e
S ": Glant branch
n s L . 1
2 15 .
O
Q B5 .
o= ASM q f’
© e
g A
= T A e 1y Outliers may represent
4%) GOWWW/W”WW 5 | I
= - completely new
s | T o e e astrophysical phenomena!
Z KOWMWWW

RPN Sttt N AR i s
PO st S

0_M5 _

Gaia magnitude [mag] / stellar luminosity [Lsun]

III|IIII|IIII|IIIIII I | | | I|
3500 4000 4500 5000 5500 6000 6500 7000 7500

Wavelength [A] Gaia color /
surface temperature [K]



https://www.aanda.org/articles/aa/full_html/2018/08/aa32843-18/aa32843-18.html

5

Using unsupervised machine learning tools to make discoveries

‘-------------------------------------.

input data for example: ~100,000 objects with the following information:
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.' input data for example: ~100,000 objects with the following information:
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Machine Learning in Astronomy: a practical overview Baron (2019): Arxiv: 1904.07248
Dalya Baron

Astronomy is experiencing a rapid growth in data size and complexity. This change fosters the development of data-driven science as a useful companion to the
common model-driven data analysis paradigm, where astronomers develop automatic tools to mine datasets and extract novel information from them. In recent
years, machine learning algorithms have become increasingly popular among astronomers, and are now used for a wide variety of tasks. In light of these
developments, and the promise and challenges associated with them, the IAC Winter School 2018 focused on big data in Astronomy, with a particular emphasis on
machine learning and deep learning techniques. This document summarizes the topics of supervised and unsupervised learning algorithms presented during the
school, and provides practical information on the application of such tools to astronomical datasets. In this document | cover basic topics in supervised machine
learning, including selection and preprocessing of the input dataset, evaluation methods, and three popular supervised learning algorithms, Support Vector Machines,
Random Forests, and shallow Artificial Neural Networks. My main focus is on unsupervised machine learning algorithms, that are used to perform cluster analysis,
dimensionality reduction, visualization, and outlier detection. Unsupervised learning algorithms are of particular importance to scientific research, since they can be
used to extract new knowledge from existing datasets, and can facilitate new discoveries.
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Using unsupervised machine learning tools to make discoveries

‘-------------------------------------.

input data for example: ~100,000 objects with the following information:
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Clustering algorithms

Objects in the sample are divided into a (typically small) number of groups.
Examples: KMeans; Hierarchical clustering; DBSCAN; Gaussian Mixture models; and using Self
Organizing Maps (SOMs).
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Dimensionality Reduction algorithms

Objects are embedded into a lower-dimensional space (typically 2D or 3D).

Examples: Principal component analysis (PCA); Local linear embedding (LLE); tSNE; UMAP; SOMs;
Autoencoders of various types.
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Using unsupervised machine learning tools to make discoveries

‘-------------------------------------.

.' input data for example: ~100,000 objects with the following information:
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Outlier Detection algorithms

A (very small) subset of the objects in the dataset is flagged as anomalies.
Examples: Isolation forests; Local outlier factor; using supervised learning algorithms; using
dimensionality reduction algorithms.

o

aam E E E E E =E =E =

4



Using unsupervised machine learning tools to make discoveries

‘-_-----------------------------------.
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Outlier Detection algorithms

A (very small) subset of the objects in the dataset is flagged as anomalies.

Examples: Isolation forests; Local outlier factor; using supervised learning algorithms; using
dimensionality reduction algorithms.
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Let’s discover!
ChatGPT

@ physical_features_for_UMAP_150p...

Hi ChatGPT! The following dataset includes different properties
measured from multi-wavelength observations of nearby galaxies as
part of the PHANGS survey. Each row represents an object
(specifically, a 150-pc region in one of the galaxies), and each
column represents different measured features. Can you help me to

find something new and exciting in this dataset?

&) Great! I'll start by loading and inspecting the dataset to understand its structure and contents.

Let's see what the data looks like.
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algorithms to multi-wavelength datasets fused from different surveys.

Different instruments have different resolutions, noise properties, FOVs, etc. We
need to make sure that the data traces the same thing.

Surveys are doing a much better job in making sure that the data can be standardized

wrt other surveys, either during the survey planning or post-survey. Examples: SDSS,
PHANGS, the deep fields.
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HST WFC3 VLT MUSE VLT MUSE  JWST NIRCam  JWST MIRI ALMA

Data standardization

The most significant limitation in our ability to apply unsupervised learning
algorithms to multi-wavelength datasets fused from different surveys.

Different instruments have different resolutions, noise properties, FOVs, etc. We
need to make sure that the data traces the same thing.

Surveys are doing a much better job in making sure that the data can be standardized
wrt other surveys, either gui

PHANGS, the deep fields| Later today you will hear: “Machine learning for star parametrization”
by A. Turchi, that will present “The Survey of Surveys”, homogenizing
products from APOGEE, GALAH, Gaia-ESO, LAMOST, and RAVE, for

radial velocity data.
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Manual definition of features of interest Apply deep networks to the raw data,
by a domain expert letting the machine to define features

Advantage: we define what features are of
interest in the exploration process.
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What aspects of the data are more important?

Manual definition of features of interest Apply deep networks to the raw data,
by a domain expert letting the machine to define features

Advantage: we define what features are of
interest in the exploration process.

Disadvantage: we define what features are of
interest in the exploration process.



Discovery with unsupervised learning: challenges/considerations
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What aspects of the data are more important?
Manual definition of features of interest Apply deep networks to the raw data,
by a domain expert letting the machine to define features

Advantage: we define what features are of
interest in the exploration process.

Disadvantage: we define what features are of
interest in the exploration process.

Important aspects to consider: how to model
missing values and upper limits?



THE EMISSION-LINE PROPERTIES OF LOW-REDSHIFT QUASI-STELLAR OBJECTS

TobpD A. BOROSON AND RICHARD F. GREEN
Kitt Peak National Observatory, National Optical Astronomy Observatories,’ P.O. Box 26732, Tucson, AZ 85726
Received 1991 August 2; accepted 1991 October 14

ABSTRACT

Spectra covering the region AA4300-5700 have been obtained of all 87 QSOs in the BQS catalog having
redshifts less than 0.5. An empirical technique which allows the measurement and subtraction of the many Fe 11
lines in this region has been developed and applied to these spectra.

An analysis including the complete of the measured and compiled properties and
reveal the following results: Most of the variance is connected to two sets of correlations, the
first being a strong anticorrelation between measures of Fe mand [ O 1]
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Letting the machine derive the features: interpretability
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The ability to interpret the resulting low-D
embedding is of fundamental importance when

using these tools to make scientific discoveries.
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Letting the machine derive the features: interpretability

X —>» Encoder — ;:t::et —> Decoder —> X
- It is not enough to identify which “features” Latent space:

the Encoder extracts.

- We need to understand the latent space and
Its properties:
- |Is the space Euclidean?
- How to interpret short vs. long distances?
- How to interpret different densities?
- How to interpret straight vs. curved lines?




Letting the machine derive the features: interpretability

X —>

What drives the variation we see in the latent space?

- Using derived features to color-code points in the
latent space: if our ability to interpret the results
depends on a set of extracted features, then why
not use derived features as the input in the first

place?

- Plotting the “average” object in each bin in the
latent space (like SOMs do) could be useful.

Encoder
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Latent
Space

Decoder —» X

Latent space:




Letting the machine derive the features: controlling the output

X —>» Encoder — ;:t::et —> Decoder —> X

More often than not, the first representation will be dominated by:

(i) Systematics; noisy objects; or objects that do not belong in the
dataset.

(i) Trends and/or group we already know: redshift; brightness/luminosity;
the galaxy bimodality, SFR-stellar mass relation, SFR-molecular gas
mass relation, etc.

We want to be able to go beyond that, either by having high-enough
dimensions in the latent space, or by pre-processing the input data.
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What aspects of the data are more important?

Manual definition of features of interest
by a domain expert

Advantage: we define what features are of
interest in the exploration process.

Disadvantage: we define what features are of
interest in the exploration process.

Important aspects to consider: how to model
missing values and upper limits?

Apply deep networks to the raw data,
letting the machine to define features

Interpretability: we must be able to explain the
latent space and the representation.

Controllability: we want to be able to control
the output, and go beyond what we already
know.
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" as the input data, or later, in the interpretation stage. In both cases, '
Ve some back-and-forth is expected. PN
_ v,
What aspects of the data are more important?
Manual definition of features of interest Apply deep networks to the raw data,
by a domain expert letting the machine to define features
Advantage: we define what features are of Interpretability: we must be able to explain the
interest in the exploration process. latent space and the representation.
Disadvantage: we define what features are of Controllability: we want to be able to control
interest in the exploration process. the output, and go beyond what we already
know.

Important aspects to consider: how to model
missing values and upper limits?



Recent ML-assisted discovery in the PHANGS survey
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https://ui.adsabs.harvard.edu/abs/2024ApJ...968...24B/abstract

A close connection between the heating of PAHs (residing in the
neutral medium) and the ionization of the warm ionized gas

The correlations are essentially a sequence in gas & dust properties probed

by the groups we found:
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In a follow-up study of the full sample, PCA visualization reveals a
group of anomalous pixels that do not follow the correlation
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In a follow-up study of the full sample, PCA visualization reveals a

group of anomalous pixels that do not follow the correlation
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Emerging picture of the connection between PAH heating and gas
ionization

Galaxies with AGN

Typical Star-Forming Galaxies | Old and Bright Stars in the Bulge
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Summary

f p
In the Big Data era in astronomy, the abundance of multi-wavelength opportunities

results in large and complex datasets. Machine Learning methods can be used to mine

these information-rich datasets, facilitating new discoveries.
\ Y

4 ™
Physically-motivated features + simpler algorithms versus applying deep learning to the

raw data: the two approaches have upsides and downsides, and | consider them

complementary when exploring datasets for new trends.
- Y,

( . . . )
Where can we find new multi-wavelength datasets to work with NOW?

- For stars: APOGEE-2 (near-infrared) & Gaia (astrometry) & TESS (RV) and more (e.g.,
Carrillo et al. 2020).

- For ISM: HI4PI (radio 21 cm) & LVM (optical IFU) & multi-wavelength photometry (here).
- Local galaxies: the PHANGS survey.

- JWST: NIRCam (near-infrared) and MIRI (mid-infrared) observations in ERS and Treasury

programs (here and here). Usually with available multi-wavelength observations.
- Y,

Dalya Baron; dalyabaron@gmail.com
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