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New observa'ons lead to new discoveries
Gravita>onal waves & merging black holes

AbboD et al. (2016)

figure from Gillon et al. (2017)

Extrasolar planets

Proto-planetary discs

Brogan et al. (2015)

Large scale structure

LCRS; 2dFGRS; SDSS

Stellar streams around the MW

Image credit: K. Malhan



The astronomical data revolu'on
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The astronomical data revolu'on

(I) Survey mode: high-quality datasets made publicly-available. 

(II) Exponen>al increase in the number of observed sources.  
• Past or current surveys: SDSS, Pan-STARRS, ZTF, DESI, Gaia. 

• Near future: Rubin, Roman, Euclid, SDSS-V, SKA. 

(III) Increased informa>on content of a given observed source 
• Higher spectral; angular; or temporal resolu>on. 

(IV) Mul>-wavelength coverage by mul>ple surveys covering radio to 
gamma-ray wavelengths.

Don’t need a telescope 

to do science 
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Leads to discoveries of phenomena 

on smaller/shorter >me scales.



The astronomical data revolu'on

(I) Survey mode: high-quality datasets made publicly-available. 

(II) Exponen>al increase in the number of observed sources.  
• Past or current surveys: SDSS, Pan-STARRS, ZTF, DESI, Gaia. 
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gamma-ray wavelengths.

Drama'c increase of 

the discovery space



Modern astronomical surveys produce complex and diverse datasets using 
observations across the electromagnetic spectrum

Observa>ons of NGC 7496 by the PHANGS (The Physics at High Angular resolu>on in Nearby GalaxieS) survey. 
The goal: probe the physics of gas, dust, and star forma>on, on scales of ~15-150 pc.

Figure from Baron et al. (2024)

https://ui.adsabs.harvard.edu/abs/2024ApJ...968...24B/abstract
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Modern astronomical surveys produce complex and diverse datasets using 
observations across the electromagnetic spectrum

PHANGS website (includes survey papers and public datasets)

Observa>ons of NGC 7496 by the PHANGS (The Physics at High Angular resolu>on in Nearby GalaxieS) survey. 
The goal: probe the physics of gas, dust, and star forma>on, on scales of ~15-150 pc.

~100,000 

independent 

pixe
ls

Figure from Baron et al. (2024)

https://sites.google.com/view/phangs/home
https://ui.adsabs.harvard.edu/abs/2024ApJ...968...24B/abstract


How to analyze such complex and high-dimensional datasets?

Model-driven or theory-driven approach 
1. Hypothesis (from theory or from a previous experiment). 

2. Observa>ons and analysis are conducted to test the hypothesis. 
3. Analysis leads to new insight, ojen leading to new hypotheses.

Inspired by Egorov et al. (2023)

data used

https://ui.adsabs.harvard.edu/abs/2023ApJ...944L..16E/abstract


How to analyze such complex and high-dimensional datasets?

Data-driven approach 
1. Sta>s>cal tools are used to visualize and dissect the high-dimensional dataset.  
2. Representa>on reveals trends; groups; or outliers, forming a new hypothesis. 

3. Analysis of the data to test the hypothesis leads to new insight.

Image credit: Jiayi Sun

A space (or point of view) in which 
the data appear in the greatest 

simplicity (J W Gibbs 1881).

https://www.google.com/url?sa=i&url=https%3A%2F%2Fastrojysun.github.io%2Fresearch.html&psig=AOvVaw36OA_9W_nMhti_Hmq3Og8L&ust=1709245562423000&source=images&cd=vfe&opi=89978449&ved=0CBUQjhxqFwoTCOCfvIaKz4QDFQAAAAAdAAAAABAE


How to analyze such complex and high-dimensional datasets?

Image credit: Jiayi Sun

KennicuD-Schmidt rela>on  
(figure from Jiménez-Donaire et al. 2023)

Data-driven approach 
1. Sta>s>cal tools are used to visualize and dissect the high-dimensional dataset.  
2. Representa>on reveals trends; groups; or outliers, forming a new hypothesis. 

3. Analysis of the data to test the hypothesis leads to new insight.

https://www.google.com/url?sa=i&url=https%3A%2F%2Fastrojysun.github.io%2Fresearch.html&psig=AOvVaw36OA_9W_nMhti_Hmq3Og8L&ust=1709245562423000&source=images&cd=vfe&opi=89978449&ved=0CBUQjhxqFwoTCOCfvIaKz4QDFQAAAAAdAAAAABAE
https://arxiv.org/abs/2211.16521


Simple manifolds in high-dimensional spaces lead to insight: the 
ultimate example
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Image credit: Gaia collabora>on (2018)
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op>cal spectra of stars

https://www.aanda.org/articles/aa/full_html/2018/08/aa32843-18/aa32843-18.html
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1D trend / correla>on 
implies fundamental 
connec>on between 
different proper>es.
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Simple manifolds in high-dimensional spaces lead to insight: the 
ultimate example

https://www.aanda.org/articles/aa/full_html/2018/08/aa32843-18/aa32843-18.html
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Clusters / separate 
groups suggests different 

forma>on channels  or 
different physics at play.

Simple manifolds in high-dimensional spaces lead to insight: the 
ultimate example

https://www.aanda.org/articles/aa/full_html/2018/08/aa32843-18/aa32843-18.html


Wavelength [A]

N
or

m
al

ize
d 

flu
x 

+ 
co

ns
ta

nt

  Gaia color /  
surface temperature [K]

  G
ai

a 
m

ag
ni

tu
de

 [m
ag

] /
 st

el
la

r l
um

in
os

ity
 [L

su
n]

Image credit: Gaia collabora>on (2018)

Outliers may represent 
completely new 

astrophysical phenomena!

Simple manifolds in high-dimensional spaces lead to insight: the 
ultimate example

https://www.aanda.org/articles/aa/full_html/2018/08/aa32843-18/aa32843-18.html


Using unsupervised machine learning tools to make discoveries
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Using unsupervised machine learning tools to make discoveries

input data for example: ~100,000 objects with the following informa'on:

Bridging the Gap between Spectra and Light-Curves: Exploring 
Mul>modal Learning for the Iden>fica>on of Broad Absorp>on 
Line Quasars by N. Guerra-Varas (Tuesday)



Using unsupervised machine learning tools to make discoveries

input data for example: ~100,000 objects with the following informa'on:

Baron (2019): Arxiv: 1904.07248



Using unsupervised machine learning tools to make discoveries

input data for example: ~100,000 objects with the following informa'on:

Clustering algorithms
Objects in the sample are divided into a (typically small) number of groups.  
Examples: KMeans; Hierarchical clustering; DBSCAN; Gaussian Mixture models; and using Self 
Organizing Maps (SOMs). 



Using unsupervised machine learning tools to make discoveries

input data for example: ~100,000 objects with the following informa'on:

Clustering algorithms

Galaxy Morphological Classifica>on via Unsupervised Machine 
Learning in the Big Data Era led by JWST, EUCLID, LSST and SKA by I. 
Lazar (Tuesday). 

Applying SOMs to iden>fy and classify complex radio morphologies in 
next-genera>on radio surveys by A. Alam (today!) 

Early-stopping SOMs as a tool to classify SSOs in space surveys by S. 
Sacquegna (Wednesday)

Objects in the sample are divided into a (typically small) number of groups.  
Examples: KMeans; Hierarchical clustering; DBSCAN; Gaussian Mixture models; and using Self 
Organizing Maps (SOMs). 
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input data for example: ~100,000 objects with the following informa'on:

Dimensionality Reduction algorithms 
Objects are embedded into a lower-dimensional space (typically 2D or 3D). 
Examples: Principal component analysis (PCA); Local linear embedding (LLE); tSNE; UMAP; SOMs; 
Autoencoders of various types. 
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input data for example: ~100,000 objects with the following informa'on:

Dimensionality Reduction algorithms 
Objects are embedded into a lower-dimensional space (typically 2D or 3D). 
Examples: Principal component analysis (PCA); Local linear embedding (LLE); tSNE; UMAP; SOMs; 
Autoencoders of various types. 

Mul>-Task Neural Nets with Monte Carlo Dropout for Spectral Analysis 
of Galaxies by M. Ginolfi (Tuesday) 

Exploring Mul>-Band Imaging for Iden>fying z>6.5 Quasars: A 
Contras>ve Learning Approach Using HSC Data by L. N. M. Ramirez 
(Tuesday) 

Unsupervised Machine Learning Techniques for Young Stellar Object 
Light Curve Characteriza>on by M. Madarász (Tuesday)



Using unsupervised machine learning tools to make discoveries

input data for example: ~100,000 objects with the following informa'on:

Dimensionality Reduction algorithms 
Objects are embedded into a lower-dimensional space (typically 2D or 3D). 
Examples: Principal component analysis (PCA); Local linear embedding (LLE); tSNE; UMAP; SOMs; 
Autoencoders of various types. 

Unsupervised learning for GRBs classifica>on by N. Cibrario 
(Wednesday) 

Machine Learning Based Parametriza>on of Solar Ac>ve Regions 
Using Disentangled Varia>onal Autoencoders by E. Dineva 
(Friday)
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input data for example: ~100,000 objects with the following informa'on:

Outlier Detection algorithms 
A (very small) subset of the objects in the dataset is flagged as anomalies. 
Examples: Isola>on forests; Local outlier factor; using supervised learning algorithms; using 
dimensionality reduc>on algorithms. 



Using unsupervised machine learning tools to make discoveries

input data for example: ~100,000 objects with the following informa'on:

Outlier Detection algorithms 
A (very small) subset of the objects in the dataset is flagged as anomalies. 
Examples: Isola>on forests; Local outlier factor; using supervised learning algorithms; using 
dimensionality reduc>on algorithms. 

Signatures to help interpretability of anomalies in astronomical data 
by E. Gangler (Tuesday) 

Unmasking the Hidden: Anomaly Detec>on in ASKAP’s Monitoring 
by Z. Wang (Wednesday)
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an>cipated. It sent me into a small existen>al crisis…
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Let’s discover!

Expedi>ng Astronomical Discovery with Large Language 
Models: Progress, Challenges, and Future Direc>ons by Y. Sen-
Ting (Thursday)



Data standardiza'on 
The most significant limita>on in our ability to apply unsupervised learning 
algorithms to mul>-wavelength datasets fused from different surveys.  
Different instruments have different resolu>ons, noise proper>es, FOVs, etc. We 
need to make sure that the data traces the same thing. 

Surveys are doing a much beDer job in making sure that the data can be standardized 
wrt other surveys, either during the survey planning or post-survey. Examples: SDSS, 
PHANGS, the deep fields.

Discovery with unsupervised learning: challenges/considerations
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Data standardiza'on 
The most significant limita>on in our ability to apply unsupervised learning 
algorithms to mul>-wavelength datasets fused from different surveys.  
Different instruments have different resolu>ons, noise proper>es, FOVs, etc. We 
need to make sure that the data traces the same thing. 

Surveys are doing a much beDer job in making sure that the data can be standardized 
wrt other surveys, either during the survey planning or post-survey. Examples: SDSS, 
PHANGS, the deep fields. Later today you will hear: “Machine learning for star parametriza>on” 

by A. Turchi, that will present “The Survey of Surveys”, homogenizing 
products from APOGEE, GALAH, Gaia-ESO, LAMOST, and RAVE, for 
radial velocity data.

Discovery with unsupervised learning: challenges/considerations



What aspects of the data are more important?

input data for example: ~100,000 objects with the following informa'on:

Manual defini'on of features of interest 
by a domain expert

Apply deep networks to the raw data, 
le`ng the machine to define features
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What aspects of the data are more important?

input data for example: ~100,000 objects with the following informa'on:

Manual defini'on of features of interest 
by a domain expert

Apply deep networks to the raw data, 
le`ng the machine to define features

Discovery with unsupervised learning: challenges/considerations

Advantage: we define what features are of 
interest in the explora>on process.
Disadvantage: we define what features are of 
interest in the explora>on process.
Important aspects to consider: how to model 
missing values and upper limits?



Figure from Shen & Ho (2014)



Figure from Shen & Ho (2014)

Predictive Modeling of Galaxy Spectra: A Comprehensive Framework 
Using Transformer Architecture, by G. Martínez Solaeche (Tuesday)


Predicting AGN Obscuration with Machine Learning by R. Silver 
(Wednesday)



Letting the machine derive the features: interpretability

The ability to interpret the resul'ng low-D 
embedding is of fundamental importance when 
using these tools to make scien'fic discoveries.



Letting the machine derive the features: interpretability

Symbolic regression and interpretable ML by D. Bartlett (Thursday)

Signatures to help interpretability of anomalies in astronomical data by E. Gangler 
(Tuesday)


Multi-Task Neural Nets with Monte Carlo Dropout for Spectral Analysis of Galaxies by 
M. Ginolfi (Tuesday)

Inferring Galaxy Baryonic Properties from IllustrisTNG Dark Matter Merger Trees with 
Graph Neural Networks by N. Andreadis (Wednesday)

Interpreting the largest cosmological simulations using Representation Learning by S. 
Trujillo (Thursday)

Machine Learning Based Parametrization of Solar Active Regions Using Disentangled 
Variational Autoencoders by E. Dineva (Friday)



Letting the machine derive the features: interpretability

Latent space:- It is not enough to iden>fy which “features” 
the Encoder extracts.  

-We need to understand the latent space and 
its proper>es: 
- Is the space Euclidean?  
- How to interpret short vs. long distances? 
- How to interpret different densi>es? 
- How to interpret straight vs. curved lines?



Letting the machine derive the features: interpretability

Latent space:What drives the varia>on we see in the latent space? 

- Using derived features to color-code points in the 
latent space: if our ability to interpret the results 
depends on a set of extracted features, then why 
not use derived features as the input in the first 
place? 

- Plo}ng the “average” object in each bin in the 
latent space (like SOMs do) could be useful.



Letting the machine derive the features: controlling the output

More ojen than not, the first representa>on will be dominated by: 
(i) Systema>cs; noisy objects; or objects that do not belong in the 

dataset. 
(ii) Trends and/or group we already know: redshij; brightness/luminosity; 

the galaxy bimodality, SFR-stellar mass rela>on, SFR-molecular gas 
mass rela>on, etc. 

We want to be able to go beyond that, either by having high-enough 
dimensions in the latent space, or by pre-processing the input data.
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Interpretability: we must be able to explain the 
latent space and the representa>on. 
Controllability: we want to be able to control 
the output, and go beyond what we already 
know.



What aspects of the data are more important?

input data for example: ~100,000 objects with the following informa'on:

Manual defini'on of features of interest 
by a domain expert

Apply deep networks to the raw data, 
le`ng the machine to define features

Discovery with unsupervised learning: challenges/considerations

Advantage: we define what features are of 
interest in the explora>on process.
Disadvantage: we define what features are of 
interest in the explora>on process.
Important aspects to consider: how to model 
missing values and upper limits?

Interpretability: we must be able to explain the 
latent space and the representa>on. 
Controllability: we want to be able to control 
the output, and go beyond what we already 
know.

“Feature extrac>on” is required in both methodologies, either to serve 
as the input data, or later, in the interpreta>on stage. In both cases, 

some back-and-forth is expected. 



input data for example: ~100,000 objects with the following informa'on:

Recent ML-assisted discovery in the PHANGS survey
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Baron et al. (2024)

https://ui.adsabs.harvard.edu/abs/2024ApJ...968...24B/abstract


Six groups with distinct properties in their 
gas and dust properties:

Baron et al. (2024)

https://ui.adsabs.harvard.edu/abs/2024ApJ...968...24B/abstract


A close connection between the heating of PAHs (residing in the 
neutral medium) and the ionization of the warm ionized gas 

SF+ISM

Diffuse 
ionized 
gas

AGN

CMZ

Expected PAH band and optical line ratio variation due to a varying radiation field
The correla>ons are essen>ally a sequence in gas & dust proper>es probed 

by the groups we found:

Baron et al. (2024)

https://ui.adsabs.harvard.edu/abs/2024ApJ...968...24B/abstract


In a follow-up study of the full sample, PCA visualization reveals a 
group of anomalous pixels that do not follow the correlation
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Emerging picture of the connection between PAH heating and gas 
ionization
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Summary

In the Big Data era in astronomy, the abundance of mul>-wavelength opportuni>es 
results in large and complex datasets. Machine Learning methods can be used to mine 
these informa>on-rich datasets, facilita>ng new discoveries.

Physically-mo>vated features + simpler algorithms versus applying deep learning to the 
raw data: the two approaches have upsides and downsides, and I consider them 
complementary when exploring datasets for new trends.

Where can we find new mul>-wavelength datasets to work with NOW? 

-For stars: APOGEE-2 (near-infrared) & Gaia (astrometry) & TESS (RV) and more (e.g., 
Carrillo et al. 2020). 

-For ISM: HI4PI (radio 21 cm) & LVM (op>cal IFU) & mul>-wavelength photometry (here). 

-Local galaxies: the PHANGS survey. 

- JWST: NIRCam (near-infrared) and MIRI (mid-infrared) observa>ons in ERS and Treasury 
programs (here and here). Usually with available mul>-wavelength observa>ons.

Dalya Baron; dalyabaron@gmail.com

http://cade.irap.omp.eu/dokuwiki/doku.php?id=hi4pi
https://asd.gsfc.nasa.gov/archive/mwmw/mmw_images.html
https://www.stsci.edu/jwst/science-execution/approved-programs/general-observers
https://www.stsci.edu/jwst/science-execution/approved-ers-programs
mailto:dalyabaron@gmail.com

