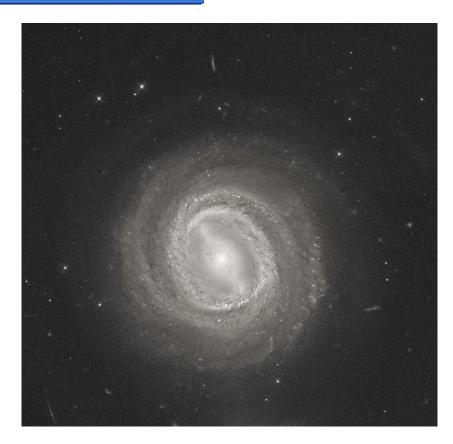

LabX 2023

What happened to the Seyfert 1.5 NGC 3783?

LabX 2023

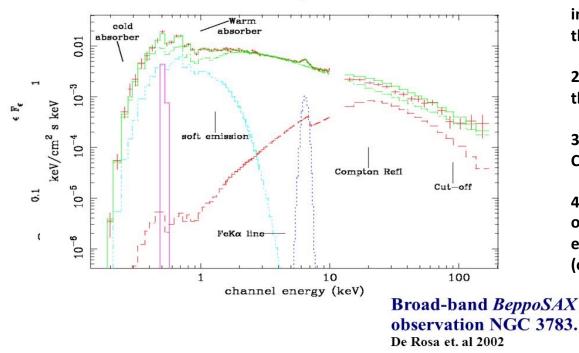
What happened to the Seyfert 1.5 NGC 3783?

Target i.d.


Object type: G

Morphology: (R')SB(r)ab

Activity Type: Sy 1.5


z≈0.009371

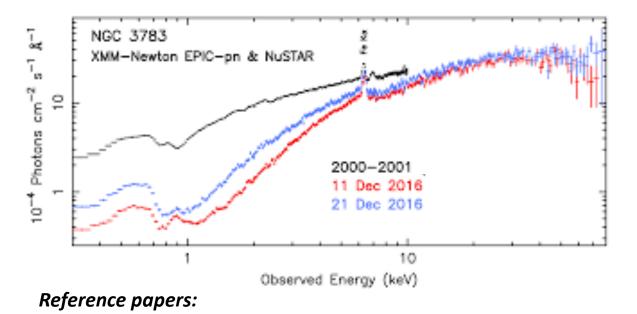
 $M_{bh}=3.0\pm0.5\times10^7 M_{\odot}$ (Peterson et al. 2004)

What happened to the Seyfert 1.5 NGC 3783?

The complex X-ray spectra

NGC 3783: Best fit spectrum

Very "typical" Seyfert 1 X-ray spectrum measured in all the X-ray observations


1) Very low cold absorption (in the UM scenario, it indicates that the putative dusty torus is not intercepting the line of sight. Ok for a type I AGN)

2) Fe line and reflection component detected \rightarrow OK with the presence of accretion disk!

3) High-E cutoff measured at E≈100 keV: OK with thermal Comptonization

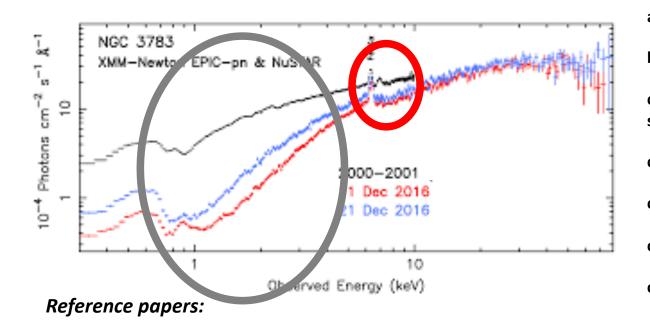
 4) warm absorber measured: → ok with UM and presence of warm electrons along the polar axis of the system to explain measurement of broad lines in polarized light (optical)

What happened to the Seyfert 1.5 NGC 3783?

De Rosa et al., 2002, A&A, 387, 838 Mehdipour et al., 2017, A&A, 607, 28

Goals

- Is the source stable during the observation? (light-curve in the whole band and in different bands? Evidences of spectral variations? ->Ratios?)
- 2) What are the properties of the primary emission of NGC 3783? (what's the spectral shape? What are the values of the parameters? Flux? Luminosity?)
- 3) Is the source absorbed? How? (Quantity and quality?)
- 4) Property of the Fekα line (E? EW? Width?)


Are these properties in agreement with the predictions of UM for AGN?

Can I interpret these changes within the UM scenario? How?

What happened to the Seyfert 1.5 NGC 3783?

How

Mandatory part

De Rosa et al., 2002, A&A, 387, 838 Mehdipour et al., 2017, A&A, 607, 28 a) use only one XMM-Newton observation b) use only EPIC/pn data in the 3-10 keV band c) perform data reduction and spectral analysis to study: c-0) light-curves c-1) shape of the primary continuum; c-2) column density and properties of the absorber c-3) properties of the FeKa line

Optional part

d) re-do everything on the other observation, then compare and discuss the differences!

LabX 2023

What happened to the Seyfert 1.5 NGC 3783?

Nucleus [XMM-Newton, pn, 3-10 keV, two states]

Mandatory] (a) data reduction, (b) extraction of the lightcurve, (c) X-ray spectral analysis and property of the absorber and iron Kα emission line

[Optional] Similarly for the other observation/spectral state

