Unveiling free-floating binary planets

with Gaia-NIR astrometry

Silvano Desidera NAF-Osservatorio Astronomico di Padova

Cocilia Lazzoni (Exeter University, UK) Alice Zurlo (Universitas Diego Portales, Santiago, Chile) Raffaele Gratton (INAF-Osservatorio Astronomico di

> Alessandro Sozzetti (INAF-Osservatorio Astronomico di Tormo)

Massive planets and brown dwarfs

- Exist both as companions to stars and as free-floating objects
- Becoming very faint and cool with age (no nuclear burning, but short-term lithium and deuterium)
- Direct detection in Gaia limited to more massive and/or younger objects due faintness in the optical

Multiplicity

- Focus of this contribution is the multiplicity of substellar objects, down to free floating planets
- Current results show the existence of BD pairs, BD-planets pairs, BD-BD pairs as companions of stars (direct imaging)
- No confirmed binary planets from transit surveys (close separation from the central star)
- Sparse detections from microlensing
- Pluto-Charon in the Solar System (mass ratio 0.12)

A turnover of multiplicity fraction in the planetary regime ?

- Well known decrease of multiplicity fraction with mass of central objects in the stellar and substellar regime
- Unexpected increase of multiplicity fraction (visual companions, >100 au) in the planetary regime in Trapezium cluster (very young age and moderately high stellar density)
- Point to specific mechanism(s) for the production of free-floating binary planets

Theoretical explanations for binary planets

- Direct formation as free-floating pairs (Portegies Zwart+2023)
- Core accretion or gravitational instability + close encounters with tidal dissipation (Ochiai+2014; Lazzoni+2024)
- After stellar fly-by with a planetary system (Wang+2023)
- Peeble accretion (Konjin+2023)

Lazzoni et al. MNRAS 2024

Key observables to disentangle: frequency vs separation (exploring closer separation); frequency vs age; environment (clusters vs sparse associations and field); frequency of binary planets bound to stars **Most of these diagnostics can be studies by Gaia-NIR**

The role of Gaia-NIR: direct detections

- Increase of sensitivity to less massive and/or older substellar objects when moving to NIR
- Magnitude limit approx K=22: detection limits (direct detection) fully into planetary regime (free-floating objects or very wide companions) at close distances and young ages

Gratton+, A&A, submitted

The role of Gaia-NIR: direct detections

Association	Age (Myr)	Mean dist (pc)	Mass@K=22 (Mjup) (Baraffe models)	
beta Pic MG	21	47	2	
Tuc-Hor	37	49	3	
AB Dor	137	51	6	
Sco-Cen	5-15	140	2	
Taurus	1	140	0.5	
old field	5000	10	24	
old field	5000	100	45	

- Detection down to few Mjup in nearby young associations
- Limited astrometric accuracy at the magnitude limit of the instrument

Caveat: peculiar SED of T and Y type objects

- Peculiar SED of T and Y type objects driven by molecular bands
- Any impact for Gaia-NIR performances with respect to more regular M or L type spectra ?

0.9-2.3 µm spectra Delorme+, 2008

The role of Gaia-NIR: astrometry

- Application of a sample of free floating substellar objects in nearby associations (165 objects; Gratton et al., submitted)
- The associations have large spread in distances (several tens of pc). Using mean distances from Gratton+ submitted
- Small system masses \rightarrow longer orbital periods for same a with respect to stars
- Considering P=1000 d as reference case in the following
- Need consolidated error budget of astrometric accuracy vs magnitude and dedicated simulations but detectability is well in the planetary regime for reasonable assumptions

The role of Gaia-NIR: astrometry

Association	Age (Myr)	Mean dist (pc)	Kmag (40 Mjup)	1 Mjup companion @1000d	Kmag (10 Mjup)	1 Mjup companion @1000d
beta Pic MG	21	47	11.5	353 µas	15	911 µas
Tuc-Hor	37	49	12.6	339 µas	16.5	874 µas
AB Dor	137	51	14.0	326 µas	18.8	840 µas
Sco-Cen	5-15	140	13.7	119 µas	16.6	306 µas
Taurus	1	140	12.5	119 µas	14.3	306 µas
old field	5000	10	18.0	1660 µas	>22	NA

• to be compared with realistic error budget but the amplitudes are definitely promising for detections

A special case: WISE J225540.75-311842.0

- Free floating substellar object
- Distance 14 pc
- Kmag = 17.42
- 99% membership probability for beta Pic MG (age 21 Myr)
- mass 3.5 Mjup (the less massive object known in the beta Pic MG, slightly less massive than 51 Eri b)

- P=1000 d
- a=0.29 au
- companions/satellite mass 17
 Mearth (1 Mneptune) (mass/ratio 0.015)
- astrometric amplitude 320 µas
- should be within Gaia-NIR capabilities

Conclusions and Perspectives

- Relevant role expected for Gaia-NIR for free-floating planets (or very wide companions) and brown dwarfs
- Completeness in detections (new detections + kinematic parameters allowing evaluations of groups membership and derivations of other properties); take care of peculiar SED
- Good sensitivity for companions/satellites around free-floating planets from the astrometric monitoring
- Down to few tens of Earth masses for the most favourable cases.
- Interested to contribute to the science case