
Data Management Plan and Data Model Training Osservatorio Astronomico di Trieste25-26 January 2024

Data Model

Andrea Bignamini - INAF-OATs

2
Data Management Plan and Data Model Training Data Model

Data Life Cycle – Digital Curation Centre

Source:
https://www.dcc.ac.uk/guidance/curation-lifecycle-model

https://www.dcc.ac.uk/guidance/curation-lifecycle-model

3
Data Management Plan and Data Model Training Data Model

Scientific data management

● During the scientific exploration process, from the data generation phase
to the data analysis phase, data management involves several aspects
– the efficient access to storage systems, in particular, parallel file systems, to write

and read large volumes of data
– the efficient data movement and management of storage spaces
– techniques for automatically optimizing the physical organization of data, necessary

for fast analysis
– techniques to effectively perform complex data analysis and searches over large

datasets
– the automation of multistep scientific process workflows

4
Data Management Plan and Data Model Training Data Model

The FAIR Guiding Principles

To be Findable:
F1. (meta)data are assigned a globally unique and persistent
identifier
F2. data are described with rich metadata
F3. metadata clearly and explicitly include the identifier of the
data it describes
F4. (meta)data are registered or indexed in a searchable
resource

To be Accessible:
A1. (meta)data are retrievable by their identifier using a
standardized communications protocol
A1.1 the protocol is open, free, and universally implementable
A1.2 the protocol allows for an authentication and
authorization procedure, where necessary
A2. metadata are accessible, even when the data are no longer
available

To be Interoperable:
I1. (meta)data use a formal, accessible, shared, and broadly
applicable language for knowledge representation
I2. (meta)data use vocabularies that follow FAIR principles
I3. (meta)data include qualified references to other (meta)data

To be Reusable:
R1. meta(data) are richly described with a plurality of accurate
and relevant attributes
R1.1. (meta)data are released with a clear and accessible data
usage license
R1.2. (meta)data are associated with detailed provenance
R1.3. (meta)data meet domain-relevant community standards

5
Data Management Plan and Data Model Training Data Model

My Datasets...

6
Data Management Plan and Data Model Training Data Model

Storage and Archive

● Data structure, consistency, cleanness, order, organization are key point to reach the goal of find useful information in millions or
billions of digital objects.

● Distinction between collections, organization of different sized datasets, timing of data usage are fundamental considerations to
organize your data

7
Data Management Plan and Data Model Training Data Model

Metadata

● Metadata are data that describe other data
● For example author, date created and date modified and file size are very basic

document metadata
● Metadata are data themselves
● Metadata are essential for:

– Data description
– Data discovery
– Data linking

● Metadata must store all information necessary to understand and use data

8
Data Management Plan and Data Model Training Data Model

Data Management & Stewardship

Goal:

● Good Data Management and Stewardship is the key that leads to:
– Knowledge discovery and innovation
– Data and knowledge integration and reuse by the community

● The problem is far beyond long term data storage, since it includes
data annotation

● humans
● machines

● transparency
● reproducibility
● reusability

of data holdings for

Metadata!

9
Data Management Plan and Data Model Training Data Model

Human-driven activities

● Intuitive sense of semantics
– Ability to identify directly the context(s)

● Less prone to error in selecting the data
– Caveat: also humans need metadata

● Not fit to scope, scale, speed
– Big Data We need machines!

10
Data Management Plan and Data Model Training Data Model

Machine-driven activities

● Must be able to face wide range of
– Types
– Formats
– Protocols

● Must keep provenance records

● Requires datasets with detailed information to move through autonomous action steps
– Identify object type
– Determine usefulness interrogating metadata
– Determine usability: license, accessibility…
– Take appropriate action

“Machine Actionability”

11
Data Management Plan and Data Model Training Data Model

Define your Use Cases

● What data will you collect or create?
● How will the data be collected or created?
● What metadata will describe the data?
● Do the datasets I’m searching for already exist?
● What tools I use?
● What formats are available?
● Can my data be used together with other dataset from different repositories?
● Who are the end users or the reference community who will use this data?
● How do I access them?
● How will you share the data?
● Who will be responsible for data management?
● Can all of this be automated or does it require human intervention?

12
Data Management Plan and Data Model Training Data Model

Data formats

● FITS is the standard data format used in Astronomy
– ESA and NASA developed FITS in the late 1970s, stemming from radio astronomy (FITS is always backward compatible)
– The Vatican Library has adopted the FITS data format for the long-term digital preservation of the books, manuscripts, and

other objects in its vast collection
● HDF5

– used in several research areas, including earth sciences, computational fluid dynamics, astronomy, astrophysics, but also
financial services and industry

● NetCDF is a set of interfaces for array-oriented data access. Starting with version 4, the netCDF library
can use HDF5 files as its base format
– Used in climatology, meteorology and oceanography applications (e.g., weather forecasting, climate change) and GIS

applications
● ROOT

– Originally designed for particle physics (at CERN), its usage has extended to other data-intensive fields like astrophysics
and neuroscience

13
Data Management Plan and Data Model Training Data Model

File formats features

● Self-description (i.e. metadata)
– Human-readable metadata availability

● Open-format, i.e. with a public specification maintained by a standards organization
● Machine independence
● Storage efficiency
● Data structures: images, n-dimensional arrays, tables, objects sequences,

hierarchical structures
● Internal data compression (e.g. tile compression)
● Data access

– read/write a portion of the n-dimensional arrays (hyperslabs) or tables

14
Data Management Plan and Data Model Training Data Model

FITS format

● Even if mainly used in Astronomy, it is useful to start with a quick view of the FITS standard,
in order to highlight some concepts and data structures

● The first FITS (Flexible Image Transport System) standard was published in 1981. The most
recent version (4.0) has been standardized in 2016
– Ref: https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf

● It is primarily designed to store scientific data sets consisting of multidimensional arrays
(images) and 2-dimensional tables organized into rows and columns of information

● In few words a FITS file is composed by two distinct parts, which can be repeated several
times:
– the first part (header) is formed by easily viewable ASCII text elements providing metadata information
– in the second part there are the data in binary format (a multi-dimensional array or a table)

https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf

15
Data Management Plan and Data Model Training Data Model

The FITS HDU

● The header and the binary part together are called Header Data Unit (HDU)
– The binary part (data unit) is always optional
– The first HDU is called primary HDU or primary array and its binary part can only be an

image (n-dimensional array)
– Any number of additional HDUs may follow the primary array. These additional HDUs are

referred to as FITS ‘extensions’
– The binary part of a fits extension can contain either an n-dimensional array or a table

● To be precise, the data unit
can also contain an ASCII
table, so it is not always
binary

16
Data Management Plan and Data Model Training Data Model

FITS header example: NISP example

Credit to Marco Frailis

17
Data Management Plan and Data Model Training Data Model

FITS metadata and data

● FITS keywords are defined by a keyword name, a value (string, logical, int, float, complex) and an optional comment
– The comment is used to further document the metadata information, e.g. indicating the unit of measure and purpose or, for date time values, the

epoch used
– Keyword names are limited to 8 characters, but a widely used standard extension allows longer names

● The FITS standard also fixes a dictionary of keyword names and corresponding value type and format for representation of
World Coordinate Systems and time coordinates

● Additional dictionaries are defined by astronomy organizations such as the European Southern Observatory (ESO) and the
National Optical Astronomy Observatory (NOAO)

18
Data Management Plan and Data Model Training Data Model

Metadata and provenance

● Today, the key drivers for the capture and management of data
descriptions are the scientific collaborations
– They bring collective knowledge and resources to explore a research area

● These data need to contain enough information so that members of the
collaboration can interpret them and use them for their research

● Metadata and provenance information are also important for the
automation of scientific analysis
– Analysis software needs to

● be able to identify the datasets appropriate for a particular analysis
● annotate new, derived data with metadata and provenance information

19

I put a lot of metadata, but
my data are still a mess!

How can I add value to them?

20
Data Management Plan and Data Model Training Data Model

JSON

● JSON (JavaScript Object Notation) is based on a subset of the JavaScript Programming
Language Standard ECMA-262 3rd Edition

● JSON is a way of storing and communicating data with specific rules (like XML, YAML,
etc.)

● JSON files has extension .json
● JSON uses key-value pairs
● JSON was designed to be human and machine readable
● JSON is easy to read and write
● Language independent even if it comes from JavaScript

https://www.json.org

https://www.json.org/

JSON Example

Source:
https://en.wikipedia.org/wiki/JSON#Syntax

{
 "firstName": "John",
 "lastName": "Smith",
 "isAlive": true,
 "age": 27,
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021-3100",
 "homePhoneNumber": "212 555-1234",
 "officePhoneNumber": "646 555-4567",
 "child1": "Catherine",
 "child2": "Thomas",
 "child3": "Trevor",
 "spouse": null
}

https://en.wikipedia.org/wiki/JSON#Syntax

JSON Example {
 "firstName": "John",
 "lastName": "Smith",
 "isAlive": true,
 "age": 27,
 "address": {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021-3100"
 },
 "phoneNumbers": [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "office",
 "number": "646 555-4567"
 }
],
 "children": [
 "Catherine",
 "Thomas",
 "Trevor"
],
 "spouse": null
}Source:

https://en.wikipedia.org/wiki/JSON#Syntax

{
 "firstName": "John",
 "lastName": "Smith",
 "isAlive": true,
 "age": 27,
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021-3100",
 "homePhoneNumber": "212 555-1234",
 "officePhoneNumber": "646 555-4567",
 "child1": "Catherine",
 "child2": "Thomas",
 "child3": "Trevor",
 "spouse": null
}

https://en.wikipedia.org/wiki/JSON#Syntax

23

name John

birthday 1985-01-01

mood happy

location New York

● Data are in a standard and usable format
● Common formats for data:

– Json
– XML
– CSV
– RDF

● How “John” is related with the rest of the
world?

24

name John

birthday 1985-01-01

mood happy

location New York

name Frank

birthday 1987-02-01

mood sad

location Boston

name Tim

birthday 1965-08-03

hair color red

location Boston

is son of

● Relations link “John” with the rest of the world

name John

birthday 1955-02-03

hair color black

location Boston

knows

knows

25

name John

birthday 1985-01-01

mood happy

location New York

name Frank

birthday 1987-02-01

mood sad

location Boston

name Tim

birthday 1965-08-03

hair color red

location Boston

● URL can specify which “John”

name John

birthday 1955-02-03

hair color black

location Boston

http://schema.org/knows

http://mysite.com/john http://mysite.com/frank

http://othersite.com/johnhttp://othersite.com/tim

● URL can define relations

http://schema.org/knows

http://schema.org/isSonOf

http://schema.org/knows
http://schema.org/knows
http://schema.org/isSonOf

26

name John

birthday 1985-01-01

mood happy

location New York

name Frank

birthday 1987-02-01

mood sad

location Boston

name New York

latitude 40°43'N

longitude 74°00'W

state New York

● You can mix information from different vocabularies

name Boston

latitude 41°21'N

longitude 71°03'W

state Massachusetts

http://schema.org/knows

http://mysite.com/john http://mysite.com/frank

http://towns.com/bostonhttp://towns.com/newyork

http://schema.org/lives http://schema.org/lives

http://schema.org/knows
http://schema.org/lives
http://schema.org/lives

27

John: “Do you have any
questions?”

28
Data Management Plan and Data Model Training Data Model

Why data modeling

● Quality: conceptual integrity is the most important consideration
in system design

● Communication: models reduce misunderstandings and promote
consensus among developers, customers, and other stakeholders

● Reliability: rigorous modeling improves the quality of the data.
You can weave constraints into the fabric of a model and the
resulting database

● Performance: a sound model simplifies database tuning

29
Data Management Plan and Data Model Training Data Model

Data model (1)

● A model is a representation of some aspect of a problem that lets you thoroughly
understand it

● A data model is a model that describes how data is stored and accessed
– It does not include many of the details of how the data is stored or how the operations are

implemented
– It uses logical concepts, such as objects, their properties, and their interrelationships

● Categories of data model
– Conceptual data model: focuses on major entity types and relationship types. Provides a high-level

overview. Has no attributes
– Logical data model: fleshes out the conceptual model with attributes and lesser entity types
– Physical data model: converts the logical model into a database design. The emphasis is on

physical constructs such as tables, keys, indexes, and constraints.

30
Data Management Plan and Data Model Training Data Model

Data model (2)

● Entity-Relationship (ER) models
– Entity: real-world object or concept
– Attribute: property of interest that further describes the entity
– Relationship: among two or more entities, it represents the associations among the entities

● Additional abstractions for advanced ER models:
– Specialization: Specialization is the process of defining a set of subclasses of an entity type; this

entity type is called the superclass of the specialization
● The set of subclasses that forms a specialization is defined on the basis of some distinguishing characteristic of

the entities in the superclass
– Generalization: reverse process of abstraction in which we identify the common features of several

entities, and generalize them into a single superclass of which the original entity types are special
subclasses

– Categories: to represent a collection of entities from different entity types

31
Data Management Plan and Data Model Training Data Model

Specialization, Generalization, Category

32
Data Management Plan and Data Model Training Data Model

Data Modeling Methodologies

● The process of designing a data model involves producing the previously described three
types of schemas: conceptual, logical, and physical

● The approach will depends on your datasets, use cases, and requirements
● A fully attributed data model contains detailed attributes and relationships for every entity

within it
● There are two may modeling approach:

– Bottom-up: you may start usually with existing data structures or databases to derive the physical data
model

– Top-down: you start in an abstact way from the conceptual data model adding details bit by bit
● Do not reinvent the wheel!

– Standard data models for your datasets may already exist Search for them!→
– Adopting standards will increase the Interoperability level of your project

33
Data Management Plan and Data Model Training Data Model

The Zen of Python – PEP 20

>>> import this

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

34
Data Management Plan and Data Model Training Data Model

Entity-relationship diagrams

● Many different Entity-Relationship Diagrams (ERD) notations available
– Chen notation, Information Engineering (IE) or Crows’s foot notation, IDEF1X, Unified Modeling

Language (UML), etc.
● The Information Engineering is a modeling notation that has been in use for many years
● IE focuses on details such as tables, keys, and indexes (it is closer to the Physical data

model). IE’s attention to database detail is helpful for explaining nuances of the UML
● The IE lacks a standard notation and there are several variants
● The UML class model specifies classes (entity types) and their relationship types. It is

closer to the Conceptual data model:
– More concise than traditional database notations (usually no keys, foreign keys, indexes and referential

integrity)
– It provides an higher level of abstraction

35
Data Management Plan and Data Model Training Data Model

UML class diagram

● The UML class diagram specifies classes (entity types) and their
relationship types

● An object is a concept, abstraction, or thing that has identity and meaning
for an application
– Application needs also determine the level of abstraction for representing an object
– E.g.: an airplane flight can be represented by departure/arrival time or as a

sequence of phases (at gate, boarding, taking off, en route, landing, at gate,
disembarking) depending on the applications

● A class describes a group of objects with similar properties (attributes),
behavior (operations), relationships to other objects, and semantic intent

36
Data Management Plan and Data Model Training Data Model

Classes and attributes

● An attribute is a named property of a class that describes a value held by each object of the class
– The second portion of the UML class box shows attribute names

● The IE notation lists attributes in both portions of the entity type box.
– The top portion has primary key attributes, the lower portion has the remaining data attributes
– The attribute authorlD above is a surrogate key (a generated number that uniquely identifies an author)

● In UML, each attribute can have an attribute multiplicity that specifies the number of possible values for
each record. If not specified, it defaults to [1].

● Normally, a relational database attribute cannot store a collection of values
– For IE, we had to convert the “many” multiplicity to a relationship type

37
Data Management Plan and Data Model Training Data Model

Data types

● It is good database practice for developers to assign each attribute a domain (IE) and then separately resolve the
domain to a data type
– Flexibility: there are fewer domains than attributes
– A domain can define both a data type and additional constraints

● But most UML tools just assign each attribute a data type
● The UML notation lists the attribute name, a colon, the data type, and attribute multiplicity
● The IE notation lists the attribute name, a colon, the domain (optional), the data type (optional, can appear with

or without the domain), and nullability

38
Data Management Plan and Data Model Training Data Model

Notation summary (1)

39
Data Management Plan and Data Model Training Data Model

Associations and Relationship

● Associations provide the means for
relating classes

● The UML notation for an association is
a line

● A UML association corresponds to an
IE:
– Identifying relationship type (solid line)

the existence of the child entity relies solely
on the parent entity

– Non-identifying relationship type
(dashed line) the child entity can stand on
its own without the parent entity

40
Data Management Plan and Data Model Training Data Model

Independent and dependent entity types

● IE distinguishes between independent entity types (square box) and dependent entity types
(rounded box)
– An independent entity type (also called strong entity type) does not include any foreign keys in its primary key. The

IE symbol is a square-corner box
– A dependent entity type (also called weak entity type) includes one or more foreign keys in its primary key (via one

or more identifying relationship types or via generalization, see the next slides). It can exist only if one ore more other
entity types also exist. The IE symbol is a rounded-corner box

● IE distinguishes between identifying relationship type (solid line) and non-identifying relationship
type (dashed line)
– An identifying relationship type propagates primary key attributes of the source entity type to the primary key of the

referent entity type. A solid line connects the entity types. The referent entity type is necessarily dependent (rounded
box).

– A non-identifying relationship type propagates primary key attributes of the source entity type to data attributes of
the referent entity type. A dashed line connects the entity types. The referent entity type may be independent (square
box) or dependent (rounded box) depending on its other relationship types and generalizations (next slides).

41
Data Management Plan and Data Model Training Data Model

Multiplicity

● Multiplicity specifies the number of
occurrences of one class that may relate
to a single occurrence of an associated
class

● Thus multiplicity pertains to an
association end

UML multiplicity

IE relationship symbols

42
Data Management Plan and Data Model Training Data Model

Multiplicity: UML vs IE

43
Data Management Plan and Data Model Training Data Model

Many-to-many relationships

● This example shows a many to many relationship between Customer and Review, i.e. a customer can rate 0
or more reviews and a review can be rated by 0 or more customers

● The physical data model of the IE notation shows that this type of relation is realized with a dependent entity
type (Review_Rating) and two or more identifying relationship types

● Review_Rating is called an associative entity type, i.e. it obtains its primary key from two or more entity types.
– Review_Rating.raterID refers to Customer.customerID

44
Data Management Plan and Data Model Training Data Model

Association names (UML)

● The UML only requires association names when there are multiple associations between the same
classes

● An association name often reads in a particular direction. Nevertheless, associations can be traversed
either way
– The UML also has a navigation icon to show the direction for reading the name

● This association traversal is analogous to combining relational database tables via foreign-key-to-
primary-key joins

● An association end name is an alias for a class in an association. The UML notation is a legend next to the
class-association intersection
– Association end names are optional if a model is unambiguous
– Ambiguity occurs when there are multiple associations for the same classes or an association for objects of the same class

● When constructing models, you should properly use association ends and not introduce a separate class
for each reference

45
Data Management Plan and Data Model Training Data Model

Association names example

46
Data Management Plan and Data Model Training Data Model

Benefits of association names

● Benefits of association names:
– Improves model readability
– Provides a table name for an associative entity type
– Disambiguates multiple associations for the same classes

● Benefits of association end names:
– Improves model readability
– Provides a foreign key name
– Disambiguates multiple associations for the same classes
– Disambiguates an association for objects of the same class
– Provides clarity for model traversal and SQL queries

47
Data Management Plan and Data Model Training Data Model

Relationship names (IE)

● It is a common IE practice to
include relationship type
names. Each relationship type
can have either a single name
or a pair of directed names.
Directed names add bulk but
make a model more readable.

● A single name can be useful for
development (it provides a
table name)

48
Data Management Plan and Data Model Training Data Model

Notation summary (2)

49
Data Management Plan and Data Model Training Data Model

Generalization

● Generalization is a defining characteristic of object-oriented software approaches and
organizes classes by their similarities and differences
– It leads to smaller models with deeper insight

● Generalization couples a class (the superclass) to one or more variations of the class (the
subclasses)

● The superclass holds common information (attributes, operations, and associations)
● Each subclass adds specific information
● Generalization organizes classes by their similarities and differences, structuring the

description of objects. Generalization can arise from requirements that list structural
alternatives

● The UML notation for generalization is a large hollow arrowhead that points to the
superclass.

50
Data Management Plan and Data Model Training Data Model

Example of inheritance in UML

● The generalization set name (productDiscriminator) is an enumerated attribute that can be
placed next to the generalization symbol

● Generalization has two purposes
– Reuse. Subclasses can share information that superclasses provide
– Form a taxonomy and declare what is similar and what is different about classes. This is much more

profound than modeling each class individually and in isolation

51
Data Management Plan and Data Model Training Data Model

Abstract class

● An abstract class is a class that has no direct occurrences. The UML
indicates an abstract class by italicizing the class name or placing
the legend {abstract} before or after the class name

● A superclass can be abstract or concrete, depending on how the
generalization is stated

● As a matter of style, it is a good idea to avoid concrete superclasses.
Then, abstract and concrete classes are readily apparent at a glance;
all superclasses are abstract and all leaf subclasses are concrete.

● Deeply nested generalizations… try to avoid!

52
Data Management Plan and Data Model Training Data Model

Nested generalization

53
Data Management Plan and Data Model Training Data Model

IE notation for generalization

● IE subtypes are dependent entity types because each subtype primary key refers to
the supertype primary key

● The supertype may be independent or dependent (but is usually independent) based
on whether its primary key incorporates a foreign key from another entity type.

54
Data Management Plan and Data Model Training Data Model

Notation summary (3)

55
Data Management Plan and Data Model Training Data Model

Alternate keys

● An alternate key is a candidate key that is not chosen as a primary key. Therefore each
candidate key is either a primary key or an alternate key

● The UML has no specified notation for unique keys (i.e. alternate keys)
● It is possible to use the same notation used by IE, the AKn.m notation (see figure above)

– AKn.m = column mth of the nth Alternate Key

56
Data Management Plan and Data Model Training Data Model

Surrogate key vs Natural key (1)

● With existence-based identity each class has a generated identifier (also called a surrogate key)
as its primary key. Each association has a primary key composed of identifiers from the related
classes
– The advantage of this approach is that each class’s primary key is a single attribute (often defined as a number)
– Furthermore, since the primary key is synthetic, it is immutable

● Another approach is value-based identity — a unique combination of real-world attributes (also
called a natural key) identifies each class occurrence. “Real-world attributes” are those that
come from the business problem description
– A downside is that the value of real-world attributes can change — such changes must propagate to foreign

keys
– Some models have a series of dependent entity types that lead to unwieldy multi-attribute primary keys

● Unless there are unusual circumstances, it is recommend the use of surrogate keys (existence-
based identity).

57
Data Management Plan and Data Model Training Data Model

Surrogate key vs Natural key (2)

Surrogate Key Example Natural Key Example

58
Data Management Plan and Data Model Training Data Model

Association, Aggregation, Composition

● Association is a structural relationship that represents objects can be connected or associated with another object
inside the system

● Aggregation and Composition are subsets of Association. In both object of one class "owns" object of another class:
– Aggregation implies a relationship where the child can exist independently of the parent. Example: Course (parent) and Student (child).

Delete the Course and the Students still exist.

– Composition implies a relationship where the child cannot exist independent of the parent. Example: Hospital (parent) and Department
(child). Departments don't exist separate to a Hospital.

59
Data Management Plan and Data Model Training Data Model

Association class

● An association class is an association
that is also a class. Like the links of an
association, the occurrences of an
association class derive identity from
the related objects

● Like a class, an association class can
have attributes, operations, and
associations

● The UML notation for an association
class is a box that connects to the
corresponding association with a dotted
line

60
Data Management Plan and Data Model Training Data Model

Ternary associations

● A ternary association is an association involving three classes
● The UML notation is a diamond with lines connecting the related classes
● Many supposed “ternary” associations are not fundamental and can be decomposed into binary

associations, with possible qualifiers and attributes

61

UML Example
Insurance
Company

Credit to Andrea Pesce

62
Data Management Plan and Data Model Training Data Model

Data model case study: Euclid

● M2 mission in the framework of ESA Cosmic Vision Program
● Euclid mission objective is to map the geometry and understand the nature of the dark Universe (dark

energy and dark matter)
● Federation of 8 European + 1 US Science Data Centers and a Science Operation Center (ESA)
● Large amount of data produced by the

mission
– Due to reprocessing
– Large amount of external data needed

(ground based observations)
– Grand total: 90 PB

● Two instruments on board:
– VIS: Visible Imager
– NISP: Near Infrared Spectro-Photometer

63
Data Management Plan and Data Model Training Data Model

A NISP instrument simulated image

● The NISP focal plane is composed of a
matrix of 4×4 2040×2040 18 micron pixel
detectors

● The photometric channel is equipped
with 3 broad band filters (Y, J and H)

● The spectroscopic channel is equipped
with 4 different low resolution near
infrared grisms (three red and one blue)
but no slit

● The three red grims provides spectra
with three different orientations (0°, 90°,
180°)

64
Data Management Plan and Data Model Training Data Model

Metadata content (simplified)

● We need to define the metadata associated to a NISP image (a single exposure)
● All images have a common set of information

– Exposure time, image category and purpose (is it a simulation, a calibration image, a sky image, etc.) and image
dimensions, some statistics on the image, to quickly check if there are anomalies, and we need to keep the
information about the instrument used to acquire a given image

– Space telescopes can perform surveys of the sky, hence the observation can be identified by the observation ID.
Moreover, for a given field, they can execute a dithering pattern, in order to increase the signal-to-noise ratio and
reduce cosmic-ray hits. So we need also to store the dither number. Additional information needed are the
observation date and time and the commanded pointing (right ascension, declination and telescope orientation)

● Then we have information specific to the Euclid instruments. The NISP instrument has both a filter
wheel and a grism wheel. The images from all detectors should be stored in a single file, to simplify its
retrieval and the analysis. However, each detector has some specific properties: gain, readout noise.
Then, for each detector we need to compute the mapping from pixel indexes to sky coordinates (RA,
DEC), i.e. its own astrometric solution.

65

UML Example
Euclid

Credit to Marco Frailis

66

Are you still there?
Questions?

67
Data Management Plan and Data Model Training Data Model

Data model implementation

● Once we have designed a data model in UML, we need to convert the diagrams
into machine readable formats
– To perform additional validations to the data model, e.g. homogeneity, common naming rules
– To be able to persist objects and relations which are compliant with the designed data model

● The implementation depends on the underlying technology:
– For relational databases: database schema
– For document oriented databases: the XML Schema Language (XSD) or the JSON Schema

(JavaScript Object Notation)
● Document based systems can also be built on top of relational databases
● Remember also that UML can be used also for software design modeling

68
Data Management Plan and Data Model Training Data Model

Database systems

● Several criteria can be used to classify Database Management Systems (DMBS)
● One of these criteria is the data model used:

– Relational DBMSs: they use the relational model, which represents a database as a collection of tables,
where each table can be stored as a separate file. Most relational databases use the high-level query
language called SQL

– NoSQL databases:
● Document based NoSQL sytems: data in form of documents using well-known formats, such as JSON, accessed by ID

or indexes
● NoSQL key-value stores: simple data model based on fast access by the key to the value associated with the key
● Column-based NoSQL systems: partition a table by column into column families, where each column family is stored in

its own files
● Graph-based NoSQL systems: Data is represented as graphs, and related nodes can be found by traversing the edges

using path expressions
– Hybrid systems: e.g. XML databases

69
Data Management Plan and Data Model Training Data Model

Relational database system

● Relational model: represents the database as collection of relations
– Each relation represents a table of values, i.e. a flat file of records
– Each row in the table represents a collection of related data values
– A row represents a fact that typically corresponds to a real-world entity or relationship
– Table name and column names are used to interpret the meaning of the values in each row

● A relation schema R, denoted by R(A1, A2, …, An) is made up of a relation name R and a
list of attributes A1, A2, …, An.
– The attribute Ai is the name of a role played by some domain D in the relation schema R
– The degree of the relation R is the number of attributes n
– D is called domain of Ai and denoted by dom(Ai)
– A domain is given: name, data type and format

70
Data Management Plan and Data Model Training Data Model

Relation (instance)

● A relation (or relation state) r of a relation schema is a set of n-tuples
r = {t1, t2, …, tm} and is denoted as r(R)

● Each n-tuple t is an ordered list of n values t = <v1, v2, …, vn>, where each value vi is an element
of dom(Ai) or a special NULL value
– Each value in a tuple is an atomic value (not divisible into components)
– We can have several meanings for NULL values: value unknown, value exists but not available, attribute

does not apply (i.e. value indefined)
● A relation r(R) is a mathematical relation of degree n on the domains dom(A1), dom(A2), …, dom(An),

which is a subset of the Cartesian product of the domains that define R:

● Some relations may represent facts about entities, other relations may represent facts about
relationships

r (R)⊆(dom(A1)×dom(A2)×⋯×dom (An))

71
Data Management Plan and Data Model Training Data Model

Relational model constraints

● Inherent model-based constraints (or implicit constraints)
– E.g.: a relation cannot have duplicate tuples

● Schema-based constraints (or explicit constraints)
– Typically directly expressed in the schema of the data model, using a Data Definition

Language (DDL)
– E.g.: domain constraints, key constraints (see next slides)

● Application-based or semantic constraints
– Constraints that cannot be directly expressed in the schema of the data model
– They must be enforced by application programs

● For each attribute, a constraint can specify whether NULL values are or are not permitted

72
Data Management Plan and Data Model Training Data Model

Domain and key constraints

● Domain constraints specify that each value of each attribute A must be an atomic value from the
domain dom(A)
– Data types associated with domains typically include standard numeric types for integers, real numbers, characters,

booleans, fixed-length and variable length strings, date, time, etc.
● A subset of attributes of the relational schema R is called superkey (SK) of R if for any two distinct

tuples t1 and t2 of a relation state r of R, t1[SK] ≠ t2[SK]
– Every relation has at least one default SK, the set of all its attributes

● A candidate key (CK) of a relational schema R is a SK of R with the additional property that removing
any attribute from CK leaves a set of attributes that is not a superkey of R
– A relation schema may have more than one CK

● A primary key (PK) is a CK whose values are used to identify tuples in the relation
– It is usually better to choose a PK with a single attribute or a small number of attributes
– A PK composed of one column is called single primary key, a combination of column is called composite primary key
– The other candidate keys are designated as unique keys (or alternate keys)

73
Data Management Plan and Data Model Training Data Model

● The entity integrity constraints states that no primary key value can be NULL
– The primary key is used to identify individual tuples in the relation

● A referential integrity constraint is specified between two relations and is used to
maintain the consistency among tuples of the two relations
– A set of attributes FK in relation schema R1 is a foreign key of R1 that references relation R2 if it

satisfies the following rules:
1. The attributes in FK have the same domain(s) as the primary key attributes PK of R2.

2. A value of FK in a tuple t1 in the current state r1(R1) either occurs as a value of PK for some tuple t2 in the current
state r2(R2) or is NULL. In the former case, we have t1[FK] = t2[PK], and we say that the tuple t1 references the
tuple t2

– If the two conditions above hold between R1 and R2, a referential integrity constraint from R1 to
R2 is said to hold

Entity and Referential Integrity Constraints

74
Data Management Plan and Data Model Training Data Model

Relational database

● A relational database usually contains many relations
● A relational database schema S is a set of relation schemas S = {R1, R2, …, Rm} and a set of

integrity constraints (IC)
● A relational database state DB of S is a set of relation states DB = {r1, r2, …, rm} such that ri is a

state of Ri and such that the ri relation states satisfy the integrity constraints specified in IC
● A database state that does not obey all the integrity constraints is called an invalid state, and

a state that satisfy all the constraints in the defined set of integrity constraints IC is called a
valid state

● Each relational DBMS must have a data definition language (DDL) for defining a relational
database schema
– Current relational DBMS-s are mostly using the SQL language for this purpose

75
Data Management Plan and Data Model Training Data Model

Relational model example (1)

76
Data Management Plan and Data Model Training Data Model

Relational model example (2)

77
Data Management Plan and Data Model Training Data Model

Relational model example (3)

78
Data Management Plan and Data Model Training Data Model

Object-relational impedance mismatch

● A set of conceptual and technical difficulties that are often encountered when a relational
database management system is been served by an application program written in an object
oriented language

● We have already discussed some solutions when comparing the UML model with the IE model
in the previous lecture

● Additional difficulties:
– Hierarchical structure:

● In UML, we can define complex hierarchical structures. A class can “aggregate” instances of other classes. The relational
model only “accepts” atomic types for the entity attributes and relations

● In the relational model, children point to their parent, while in the hierarchical model parents point to their children
– Inheritance:

● Not directly supported by the relational model. Several mappings can be implemented to keep the inheritance information
– Class normalization vs data normalization

79
Data Management Plan and Data Model Training Data Model

Examples

● Many-to-many associations, when
mapped to a relational schema, require
an additional table, i.e. an additional
relation

● In the relational schema we cannot
define an upper limit on the multiplicity

● Abstract classes have multiple mapping
options, each one with some limitations

80
Data Management Plan and Data Model Training Data Model

Specialization and generalization

● We consider here only the single inheritance
● To convert each specialization with m subclasses {S1, S2, …, Sm} and superclass C, where the

attributes of C are {k, a1, a2, …, an} and k is the primary key, into a relation schema, the options are:
– Multiple relations - superclass and subclasses. Create a relation L for C with attributes Attrs(L) = {k, a1, …, an}

and PK(L) = k. Create a relation Li for each subclass Si, with attributes Attrs(Li) = {k} ∪ {attributes of Si} and PK(Li) = k.

– Multiple relations – subclass only. Create a relation Li for each subclass Si, with the attributes Attrs(Li) =
{attributes of Si} ∪ {k, a1, …, an} and PK(Li) = k.

– Single relation with one type attribute. Create a single relation schema L with attributes Attrs(L) = {k, a1, …, an} ∪
{attributes of S1} ∪ … ∪ {attributes of Sm} ∪ {t} and PK(L) = k. The attribute t is called type (or discriminating) attribute
whose value indicates the subclass to which each tuple belongs

– Single relation multiple type attributes. As above, but instead of a single type attribute t, there is a set {t1, t2, …, tm} of
m boolean type attributes indicating wether or not a tuple belongs to subclass Si.

81
Data Management Plan and Data Model Training Data Model

Object-Relational Mapping (ORM)

● Object-relational mapping
(ORM) uses different tools,
technologies and techniques
to map data objects in a
target programming
language to relations and
tables of a RDBMS

● An ORM solution consists of
the following four pieces:

82
Data Management Plan and Data Model Training Data Model

ORM solutions

● An ORM abstracts your application away from the underlying SQL database and SQL dialect
● If the tool supports a number of different databases (and most do), this confers a certain level of

portability on your application
● Several programming languages have at least one ORM solution

– Java: it provides both a standard specification, named Java Persistence API (JPA), and several implementations of
the spefication (Hibernate, EclipseLink)

– C++: possible ORM solutions are
● ODB: https://www.codesynthesis.com/products/odb
● QxOrm: https://www.qxorm.com/qxorm_en/home.html

– Python:
● SQLAlchemy: https://www.sqlalchemy.org/
● The Django framework: https://docs.djangoproject.com/en/2.1/topics/db/
● Pony: https://ponyorm.com/

– Ruby: ActiveRecord, DataMapper, Sequel

https://www.codesynthesis.com/products/odb
https://www.qxorm.com/qxorm_en/home.html
https://www.sqlalchemy.org/
https://docs.djangoproject.com/en/2.1/topics/db/
https://ponyorm.com/

83
Data Management Plan and Data Model Training Data Model

SQLAlchemy (1)

● The SQLAlchemy SQL Toolkit and Object Relational Mapper is a comprehensive set of
tools for working with databases and Python

● It provides a full suite of well-known enterprise-level persistence patterns, designed
for efficient and high-performing database access

● SQLAlchemy has dialects for many popular database systems including Firebird,
Informix, Microsoft SQL Server, MySQL, Oracle, PostgreSQL, SQLite, or Sybase

● The SQLAlchemy has four ways of working with database data:
– Raw SQL
– SQL Expression Language
– Schema Definition Language
– ORM

84
Data Management Plan and Data Model Training Data Model

SQLAlchemy (2)

● SQLAlchemy ORM consists of several components
– Engine

● It manages the connection with the database
● It is created using the create_engine() function

– Declarative Base class
● It maintains a catalog of classes and tables
● It is created using DeclarativeBase and is bound to the engine

– Session class
● It is a container for all conversations with the database
● It is created using the sessionmaker() function and is bound to the engine

● https://docs.sqlalchemy.org/en/20/tutorial/index.html

https://docs.sqlalchemy.org/en/20/tutorial/index.html

85
Data Management Plan and Data Model Training Data Model

Prerequisites

● Download and install the Python Anaconda (or Miniconda) Distribution, with
Python version 3.x:
https://www.anaconda.com/download

● Then you need to install some additional python packages for the following
exercise/hands-on:
– To install the Django framework use the following command line:

● Clone the GIT repository and enter the directory of SQLAlchemy examples

conda create -n orm_sqlalchemy sqlalchemy
conda activate orm_sqlalchemy

git clone https://www.ict.inaf.it/gitlab/bignamini/orm_project.git
cd orm_example/sqlalchemy_example

https://www.anaconda.com/download
https://www.ict.inaf.it/gitlab/bignamini/orm_project.git

86
Data Management Plan and Data Model Training Data Model

ORM with SQLAlchemy: Example 1

● Engines https://docs.sqlalchemy.org/en/20/core/engines.html
● Declarative Base https://docs.sqlalchemy.org/en/20/orm/declarative_styles.html
● Session https://docs.sqlalchemy.org/en/20/orm/session.html
● Query https://docs.sqlalchemy.org/en/20/orm/queryguide/query.html

https://docs.sqlalchemy.org/en/20/core/engines.html
https://docs.sqlalchemy.org/en/20/orm/declarative_styles.html
https://docs.sqlalchemy.org/en/20/orm/session.html
https://docs.sqlalchemy.org/en/20/orm/queryguide/query.html

87
Data Management Plan and Data Model Training Data Model

ORM with SQLAlchemy: Example 1

88
Data Management Plan and Data Model Training Data Model

ORM with SQLAlchemy: Example 1

89
Data Management Plan and Data Model Training Data Model

ORM with SQLAlchemy: Example 1

90
Data Management Plan and Data Model Training Data Model

ORM with SQLAlchemy: Example 2

● Foreign keys in SQLite
https://docs.sqlalchemy.org/en/20/dialects/sqlite.html#foreign-k
ey-support

● Relationship
https://docs.sqlalchemy.org/en/20/orm/basic_relationships.html

https://docs.sqlalchemy.org/en/20/dialects/sqlite.html#foreign-key-support
https://docs.sqlalchemy.org/en/20/dialects/sqlite.html#foreign-key-support
https://docs.sqlalchemy.org/en/20/orm/basic_relationships.html

91
Data Management Plan and Data Model Training Data Model

ORM with SQLAlchemy: Example 2

92
Data Management Plan and Data Model Training Data Model

ORM with SQLAlchemy: Example 2

93
Data Management Plan and Data Model Training Data Model

Inheritance in Python

UML

● This is a simple example of inheritance in
UML and how can be implemented in

Python

94
Data Management Plan and Data Model Training Data Model

Inheritance in a Relational Database

IE

IE

IE

Single table
inheritance

● Unique ID
● No JOIN necessary
● Many NULL attributes

Concrete table inheritance
● Not unique ID
● No JOIN necessary
● No NULL attributes

Joined table inheritance
● Unique ID
● JOIN necessary
● No NULL attributes

95
Data Management Plan and Data Model Training Data Model

ORM with SQLAlchemy: Example 3

● Inheritance
https://docs.sqlalchemy.org/en/20/orm/inheritance.html

https://docs.sqlalchemy.org/en/20/orm/inheritance.html

96
Data Management Plan and Data Model Training Data Model

ORM with SQLAlchemy: Example 3

97
Data Management Plan and Data Model Training Data Model

ORM with SQLAlchemy: Example 3

98
Data Management Plan and Data Model Training Data Model

Django

● Django is a high-level Python Web framework that encourages rapid development and clean, pragmatic design
https://www.djangoproject.com

● Django follows the model-template-view (MTV) architectural pattern
– An object-relational mapper, defining a data model as python classes (Models)
– A system for processing HTTP requests (Views) with a web templating sytem (Template)
– A regular-expression-based URL dispatcher (Url)

● Django comes with a lightweight standalone web server for development and testing
● A serialization system that can produce and read XML and/or JSON representation of Django models
● Lot of reusable packages provided by the community:

https://djangopackages.org/

https://www.djangoproject.com/
https://djangopackages.org/

99
Data Management Plan and Data Model Training Data Model

Data Model for Insurance Company

Credit to Andrea Pesce

100
Data Management Plan and Data Model Training Data Model

Prerequisites

● The simplest way to install Django is to download and install
the Python Anaconda Distribution, with Python version 3.x:
https://www.anaconda.com/download

● Then you need to install some additional python packages for the
following exercise/hands-on:
– To install the Django framework use the following command line:

– Additional packages are needed, not available in Anaconda but installed with the “pip” command:

conda create -n insurance django

pip install django-extensions djangorestframework
pip install django-composite-field django-url-filter
pip install django-phonenumber-field phonenumbers
pip install Pillow

https://www.anaconda.com/download

101
Data Management Plan and Data Model Training Data Model

ORM project example
● The entire example can be retrieved at the following link:

https://www.ict.inaf.it/gitlab/odmc/orm_example
● You can clone the project with the git version control system, i.e. with the

command:

● Anyway, to create a Diango project from scratch you can use the following
commands

which creates a project folder, named insurance, with additional files and
then an application, named insurancedb, inside the project.
It automatically creates skeleton files needed by a Django project and
application

git clone https://www.ict.inaf.it/gitlab/bignamini/orm_project.git
cd orm_example/django_example

django-admin startproject insurance
cd insurance
python manage.py startapp insurancedb

https://www.ict.inaf.it/gitlab/odmc/orm_example
https://www.ict.inaf.it/gitlab/bignamini/orm_project.git

102
Data Management Plan and Data Model Training Data Model

Project structure

● For admin.py, models.py, urls.py and views.py files we are going to use the ones in the git repository
● We must edit the settings.py

insurance/
├── insurancedb
│ ├── admin.py
│ ├── apps.py
│ ├── migrations
│ ├── models.py
│ ├── tests.py
│ └── views.py
├── manage.py
└── insurance
 ├── settings.py
 ├── urls.py
 └── wsgi.py

File containing the app data
model
Views on the data model
classes
Project settings: app list and
configuration

Site urls declaration

File configuring the Admin site

103
Data Management Plan and Data Model Training Data Model

Django Implementation (1)
● Each class inherits models.Model
● All fields use a Django Model Data Type

https://www.webforefront.com/django/modeldatatypesandvalidation.html
– models.CharField(max_length = 20)
– models.BooleanField()
– models.FloatField()
– models.DateTimeField()
– …

● Attributes in the Data Model Type are used to set options for fields
– null = True
– primary_key = True

● Foreign keys https://docs.djangoproject.com/en/1.11/ref/models/fields/#django.db.models.ForeignKey

● Related names https://docs.djangoproject.com/en/dev/topics/db/queries/#backwards-related-objects

licensePlate = models.ForeignKey(Vehicle)

fiscalCode1 = models.ForeignKey(Client, on_delete = models.CASCADE, related_name = "primo")

https://www.webforefront.com/django/modeldatatypesandvalidation.html
https://docs.djangoproject.com/en/1.11/ref/models/fields/#django.db.models.ForeignKey
https://docs.djangoproject.com/en/dev/topics/db/queries/#backwards-related-objects

104
Data Management Plan and Data Model Training Data Model

Django Implementation (2)

● By enumerated type we mean a type that provides a set of possible values through the
choices parameter (option) available to all field types

● Model Meta options is “anything that’s not a field”

– Abstract class
– Ordering
– Candidate key of multiple columns
– ...

● It is a good practice to override the default name of objects

FAMILY_REPORTS = ('primo', 'secondo', 'terzo')

relationship = models.CharField(max_length=7, choices = [(d,d) for d in FAMILY_REPORTS])

class Meta:
 Abstract = True

class Meta:
 Ordering = ['surname']

class Meta:
 unique_together = (("fiscalCode1", "fiscalCode2"),)

def __str__(self):
 return self.name

105
Data Management Plan and Data Model Training Data Model

DB Schema creation

● Once we have defined our data model in insurancedb/models.py we need Django to create the corresponding DB
schema

● First let’s check the the project settings includes the imagedb application, i.e. that the file insurance/settings.py
contains the the strings highlighted in red in the box on the bottom left

● To do the first migration, i.e. generation
of the DB schema, run the following
command

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'django_extensions',
 'insurancedb',
 'rest_framework',
 'url_filter',
]

python manage.py makemigrations

Migrations for 'insurancedb':
 insurancedb/migrations/0001_initial.py
 - Create model BMClass
 - Create model Client
 - Create model Office
 - Create model Vehicle
 - Create model Contract
 - Create model Claims
 - Create model BlackBox
 - Create model Agent
 - Create model FamilyReports

output

Then run the command
python manage.py migrate

106
Data Management Plan and Data Model Training Data Model

Data insertion

● We can now open a python shell and interact with the data model API

● You can pass a Python script to insert data

python manage.py shell

Python 3.7.0 (default, Jun 28 2018, 13:15:42)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: from insurancedb.models import BMClass

In [2]: bonus = BMClass(BMClass=1, basePremium=100.00)

In [3]: bonus.save()

In [4]: quit()

python manage.py shell < ../insert.py

107
Data Management Plan and Data Model Training Data Model

Django urls.py and views.py

● A clean, elegant URL scheme is an important detail in a high-quality Web application. Django lets
you design URLs however you want, with no framework limitations

● To design URLs for an app, you create a Python module informally called a URLconf (URL
configuration). This module is pure Python code and is a mapping between URL path expressions
to Python functions (your views)

● A view function, or view for short, is simply a Python function that takes a Web request and
returns a Web response. This response can be:
– HTML contents
– A redirect
– A 404 error
– An XML document
– An image
– ...

108
Data Management Plan and Data Model Training Data Model

Django admin.py

● Django provides an automatic admin interface
● It reads metadata from your models to provide a quick, model-centric interface

where trusted users can manage content on your site
● You can customize the admin interface editing the admin.py
● Setup an admin user

● Run the Django web server

● Access to http://127.0.0.1:8000/

python manage.py createsuperuser

python manage.py runserver

http://127.0.0.1:8000/

109
Data Management Plan and Data Model Training Data Model

The NISP image data model

Credit to Marco Frailis

110
Data Management Plan and Data Model Training Data Model

Implementation with Django

● To implement the previous data model, in the following we will use the ORM provided by
the Django web framework, in Python language

● Django features:
– An object-relational mapper, defining a data model as python classes (Models)
– A system for processing HTTP requests with a web templating sytem (Views)
– A regular-expression-based URL dispatcher (Controller)
– A lightweight standalone web server for development and testing
– A serialization sytsem thatn can produce and read XML and/or JSON representation of Django models
– Lot of reusable packages provided by the community:

https://djangopackages.org/
● Several frameworks to build a REST API, e.g.:

https://www.django-rest-framework.org/

https://djangopackages.org/

111
Data Management Plan and Data Model Training Data Model

Prerequisites

● The simplest way to install Django is to download and install the Python Anaconda
Distribution, with Python version 3.x:
https://www.anaconda.com/download

● Then you need to install some additional python packages for the following
exercise/hands-on:
– To install the Django framework use the following command line:

– Additional packages are needed, not available in Anaconda but installed with the “pip” command:

● Another tool used, Jupyter, is already available in Anaconda

conda install django

pip install django-extensions djangorestframework django-composite-field
pip install django-url-filter

https://www.anaconda.com/download

112
Data Management Plan and Data Model Training Data Model

ORM project example

● The entire example can be retrieved at the following link:
https://www.ict.inaf.it/gitlab/odmc/orm_example

● You can clone the project with the git version control system, i.e. with the command:

● Anyway, to create a Diango project from scratch you can use the following commands

which creates a project folder, named orm_example, with additional files and then an application,
named imagedb, inside the project.
It automatically creates skeleton files needed by a django project and application

git clone https://www.ict.inaf.it/gitlab/bignamini/orm_project.git

django-admin startproject orm_example
cd orm_example
python manage.py startapp imagedb

https://www.ict.inaf.it/gitlab/odmc/orm_example
https://www.ict.inaf.it/gitlab/bignamini/orm_project.git

113
Data Management Plan and Data Model Training Data Model

Project structure

orm_example/
├── imagedb
│ ├── admin.py
│ ├── apps.py
│ ├── migrations
│ ├── models.py
│ ├── tests.py
│ └── views.py
├── manage.py
└── orm_example
 ├── settings.py
 ├── urls.py
 └── wsgi.py

File containing the app data model

Views on the data model classes

Project settings: app list and
configuration

Site urls declaration

114
Data Management Plan and Data Model Training Data Model

The Django ORM

● From the data model class to a Django ORM model class

● Each model is represented by a
class that subclasses
django.db.models.Model

● ImageBaseFrame here is
abstract: no table instantiated
– That’s why we define the stats

attribute as a Foreign Key to
the ImageStatistics class and not
vice versa

from django.db import models

class ImageBaseFrame(models.Model):
 exposureTime = models.FloatField()
 imgNumber = models.PositiveSmallIntegerField()
 naxis1 = models.PositiveIntegerField()
 naxis2 = models.PositiveIntegerField()
 imageType = ImageType()
 stats = models.OneToOneField(
 ImageStatistics,
 models.SET_NULL,
 blank=True,
 null=True,
)

 class Meta:
 abstract = True

115
Data Management Plan and Data Model Training Data Model

Enumerated type

● By enumerated type, or choice, here we mean a type that provides a set of possible values which the
attribute is constrained towards

● The Django ORM provides this feature through the choices parameter (option) available to all field
types

● The choices parameter requires an iterable (e.g., a list or tuple) consisting itself of iterables of exactly
two items

● The first element in each tuple is the actual value to be set on the model, and the second element is
the human-readable name

 logLevel = models.PositiveSmallIntegerField(
 choices=((10, 'DEBUG'),
 (20, 'INFO'),

 (30, 'WARNING'),
 (40, 'ERROR'))

)

116
Data Management Plan and Data Model Training Data Model

Composite fields

● Sometime we would like to define a model class attribute as a multi-column field in the same table (i.e. a non-atomic type)
instead of creating a 1-to-1 relation (a second table with the attribute columns and a foreign key)

● Many ORM systems provide such feature:
– JPA: named as embeddable classes
– odb: named as Composite Value Types
– SQLAlchemy: named as Composite Column Types

● Django ORM does not provide directly this feature. However there is a package provided by the community, called django-
composite-field, which provides an “acceptable” solution

● Composite fields provide an implementation of a “part-of” relationship, i.e. what in the UML class diagram is called
composition

117
Data Management Plan and Data Model Training Data Model

The ImageType class

IMAGE_CATEGORY = (
 'SCIENCE',

 'CALIBRATION',
 'SIMULATION')

IMAGE_FIRST_GROUP = (
 'OBJECT',
 'STD',
 'BIAS',
 'DARK',
 'FLAT',

 'LINEARITY',
 'OTHER')

IMAGE_SECOND_GROUP = (
 'SKY',
 'LAMP',
 'DOME',
 'OTHER')

from composite_field import CompositeField

class ImageType(CompositeField):

 category = models.CharField(
 max_length=20,

 choices=[(d, d) for d in IMAGE_CATEGORY]
)

 firstType = models.CharField(
 max_length=20,

 choices=[(d,d) for d in IMAGE_FIRST_GROUP]
)

 secondType = models.CharField(
 max_length=20,

 choices=[(d,d) for d in IMAGE_SECOND_GROUP]
)

118
Data Management Plan and Data Model Training Data Model

The ImageSpaceFrame class

● The same Instrument is associated to
many images, hence here we use a
Foreign Key from ImageSpaceFrame
to Instrument

● If the Instrument instance is deleted,
also all images referring to it are
automatically deleted (option
on_delete set to models.CASCADE in
ForeignKey)

class Instrument(models.Model):
 instrumentName = models.CharField(max_length=100)
 telescopeName = models.CharField(max_length=100)

class Pointing(CompositeField):
 rightAscension = models.FloatField()
 declination = models.FloatField()
 orientation = models.FloatField()

class ImageSpaceFrame(ImageBaseFrame):
 observationDateTime = models.DateTimeField()
 observationId = models.PositiveIntegerField()
 ditherNumber = PositiveSmallIntegerField()
 instrument = models.ForeignKey(Instrument,
 on_delete=models.CASCADE)
 commandedPointing = Pointing()

 class Meta:
 abstract = True

119
Data Management Plan and Data Model Training Data Model

NispDetector

● Many detectors (up to 16)
associated to the same
raw frame

● Since NispRawFrame is
not yet defined, we pass
the class name as a
string to models.ForeignKey

● But we want to access the
detector data using the
NispRawFrame class, i.e. the reverse relation.

● This is the purpose of the related_name parameter. For instance
we can access the detector data using NispRawFrame.detectors

NISP_DETECTOR_ID = (
 '11','12','13','14',
 '21','22','23','24',
 '31','32','33','34',
 '41','42','43','44'
)

class NispDetector(models.Model):
 detectorId = models.CharField(
 max_length=2,
 choices = [(d,d) for d in NISP_DETECTOR_ID]
)
 gain = models.FloatField()
 readoutNoise = models.FloatField()
 rawFrame = models.ForeignKey('NispRawFrame',
 related_name='detectors',
 on_delete=models.CASCADE)

120
Data Management Plan and Data Model Training Data Model

NispRawFrame class

● A models.OneToOneField
is analogous to
models.ForeignKey with
the option unique=True
but the reverse side of
the relation will directly
return a single object

class DataContainer(models.Model):
 fileFormat = models.CharField(
 max_length=10
)
 formatIdentifier = models.CharField(
 max_length=20
)
 formatVersion = models.CharField(
 max_length=20
)
 url = models.URLField()

class NispRawFrame(ImageSpaceFrame):
 filterWheelPosition = models.CharField(
 max_length=10,
 choices = [(d,d) for d in NISP_FILTER_WHEEL]
)

 grismWheelPosition = models.CharField(
 max_length=10,
 choices = [(d,d) for d in NISP_GRISM_WHEEL]
)
 frameFile = models.OneToOneField(DataContainer,
 on_delete=models.CASCADE)

NISP_FILTER_WHEEL = (
 'Y',
 'J',
 'H',
 'OPEN',
 'CLOSE'
)

NISP_GRISM_WHEEL = (
 'BLUE0',
 'RED0',
 'RED90',
 'RED180'
 'OPEN'
 'CLOSE'
)

121
Data Management Plan and Data Model Training Data Model

DB Schema creation 1/2

● Once we have defined our data model in imagedb/models.py we need Django to create the corresponding DB schema
● First let’s check the the project settings includes the imagedb application, i.e. that the file orm_example/settings.py

contains the the strings highlighted in red in the box on the bottom left
● To do the first migration, i.e. generation

of the DB schema, run the following
command

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'django_extensions',
 'imagedb',
 'rest_framework',
 'url_filter',
]

python manage.py makemigrations

Migrations for 'imagedb':
 imagedb/migrations/0001_initial.py
 - Create model Astrometry
 - Create model DataContainer
 - Create model ImageStatistics
 - Create model Instrument
 - Create model NispDetector
 - Create model NispRawFrame
 - Add field rawFrame to nispdetector
 - Add field detector to astrometry

command

output

Then run the command

python manage.py migrate

122
Data Management Plan and Data Model Training Data Model

DB Schema creation 2/2

generated by SchemaCrawler 15.01.03
generated on2018-10-13 20:29:13

imagedb_astrometry [table]
id INTEGER NOT NULL

auto-incremented
ctpye1_coordinateType VARCHAR(4) NOT NULL
ctpye1_projectionType VARCHAR(3) NOT NULL
ctype2_coordinateType VARCHAR(4) NOT NULL
ctype2_projectionType VARCHAR(3) NOT NULL
crval1 REAL NOT NULL
crval2 REAL NOT NULL
crpix1 REAL NOT NULL
crpix2 REAL NOT NULL
cd1_1 REAL NOT NULL
cd1_2 REAL NOT NULL
cd2_1 REAL NOT NULL
cd2_2 REAL NOT NULL
detector_id INTEGER

imagedb_nispdetector [table]
id INTEGER NOT NULL

auto-incremented
detectorId VARCHAR(2) NOT NULL
gain REAL NOT NULL
readoutNoise REAL NOT NULL
rawFrame_id INTEGER NOT NULL

imagedb_datacontainer [table]
id INTEGER NOT NULL

auto-incremented
fileFormat VARCHAR(10) NOT NULL
formatIdentifier VARCHAR(20) NOT NULL
formatVersion VARCHAR(20) NOT NULL
url VARCHAR(200) NOT NULL

imagedb_nisprawframe [table]
id INTEGER NOT NULL

auto-incremented
exposureTime REAL NOT NULL
imgNumber SMALLINT UNSIGNED NOT NULL
naxis1 INTEGER UNSIGNED NOT NULL
naxis2 INTEGER UNSIGNED NOT NULL
imageType_category VARCHAR(20) NOT NULL
imageType_firstType VARCHAR(20) NOT NULL
imageType_secondType VARCHAR(20) NOT NULL
observationDateTime DATETIME NOT NULL
observationId INTEGER UNSIGNED NOT NULL
ditherNumber SMALLINT UNSIGNED NOT NULL
commandedPointing_rightAscension REAL NOT NULL
commandedPointing_declination REAL NOT NULL
commandedPointing_orientation REAL NOT NULL
filterWheelPosition VARCHAR(10) NOT NULL
grismWheelPosition VARCHAR(10) NOT NULL
frameFile_id INTEGER NOT NULL
instrument_id INTEGER NOT NULL
stats_id INTEGER

imagedb_imagestatistics [table]
id INTEGER NOT NULL

auto-incremented
min REAL NOT NULL
max REAL NOT NULL
mean REAL NOT NULL
stddev REAL NOT NULL
median REAL NOT NULL

imagedb_instrument [table]
id INTEGER NOT NULL

auto-incremented
instrumentName VARCHAR(100) NOT NULL
telescopeName VARCHAR(100) NOT NULL

123
Data Management Plan and Data Model Training Data Model

Data insertion and retrieval

● We can now open a python shell and interact with the data model API

● However, for didactic purpose, we can use a Django extension to start a Jupyter notebook. The orm_example project example
already provides one notebook. To use it, issue the following command:

a browser page will be opened. In this page, select the file
imagedb_objects.ipynb and execute each cell.

python manage.py shell

Python 3.7.0 (default, Jun 28 2018, 13:15:42)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: from imagedb.models import Instrument

In [2]: instrument = Instrument(telescopeName='Euclid', instrumentName='VIS')

In [3]: instrument.save()

In [4]: quit

python manage.py shell_plus --notebook

124
Data Management Plan and Data Model Training Data Model

Multi-table inheritance 1/3

● With django model abstract base classes, we cannot define foreign keys referencing such
base class (since no table is create for abstract classes)

● A solution is the Multi-table inheritance of Django models. In this case the abstraction is
removed from such base classes and each class in the inheritance hierarchy will have a
corresponding table in the DB schema.

● To obtain a multi-table inheritance version of the previous data model, remove the
statements

class ImageBaseFrame(models.Model):
 ...

 class Meta:
 abstract = True

class ImageSpaceFrame(ImageBaseFrame):
 ...

 class Meta:
 abstract = True

125
Data Management Plan and Data Model Training Data Model

Multi-table inheritance 2/3

generated bySchemaCrawler 15.01.03
generated on2018-10-15 16:03:08

imagedb_astrometry [table]
id INTEGER NOT NULL

auto-incremented
ctype1_coordinateType VARCHAR(4) NOT NULL
ctype1_projectionType VARCHAR(3) NOT NULL
ctype2_coordinateType VARCHAR(4) NOT NULL
ctype2_projectionType VARCHAR(3) NOT NULL
crval1 REAL NOT NULL
crval2 REAL NOT NULL
crpix1 REAL NOT NULL
crpix2 REAL NOT NULL
cd1_1 REAL NOT NULL
cd1_2 REAL NOT NULL
cd2_1 REAL NOT NULL
cd2_2 REAL NOT NULL
detector_id INTEGER

imagedb_nispdetector [table]
id INTEGER NOT NULL

auto-incremented
detectorId VARCHAR(2) NOT NULL
gain REAL NOT NULL
readoutNoise REAL NOT NULL
rawFrame_id INTEGER NOT NULL

imagedb_datacontainer [table]
id INTEGER NOT NULL

auto-incremented
fileFormat VARCHAR(10) NOT NULL
formatIdentifier VARCHAR(20) NOT NULL
formatVersion VARCHAR(20) NOT NULL
url VARCHAR(200) NOT NULL

imagedb_nisprawframe [table]
imagespaceframe_ptr_id INTEGER NOT NULL
filterWheelPosition VARCHAR(10) NOT NULL
grismWheelPosition VARCHAR(10) NOT NULL
frameFile_id INTEGER NOT NULL

imagedb_imagespaceframe [table]
imagebaseframe_ptr_id INTEGER NOT NULL
observationDateTime DATETIME NOT NULL
observationId INTEGER UNSIGNED NOT NULL
ditherNumber SMALLINT UNSIGNED NOT NULL
commandedPointing_rightAscension REAL NOT NULL
commandedPointing_declination REAL NOT NULL
commandedPointing_orientation REAL NOT NULL
instrument_id INTEGER NOT NULL

imagedb_imagebaseframe [table]
id INTEGER NOT NULL

auto-incremented
exposureTime REAL NOT NULL
imgNumber SMALLINT UNSIGNED NOT NULL
naxis1 INTEGER UNSIGNED NOT NULL
naxis2 INTEGER UNSIGNED NOT NULL
imageType_category VARCHAR(20) NOT NULL
imageType_firstType VARCHAR(20) NOT NULL
imageType_secondType VARCHAR(20) NOT NULL
stats_id INTEGER

imagedb_imagestatistics [table]
id INTEGER NOT NULL

auto-incremented
min REAL NOT NULL
max REAL NOT NULL
mean REAL NOT NULL
stddev REAL NOT NULL
median REAL NOT NULL

imagedb_instrument [table]
id INTEGER NOT NULL

auto-incremented
instrumentName VARCHAR(100) NOT NULL
telescopeName VARCHAR(100) NOT NULL

126
Data Management Plan and Data Model Training Data Model

Multi-table inheritance 3/3

● Each model corresponds to its own database table and can be queried and created individually
● The inheritance relationship introduces links between the child model and each of its parents

(via an automatically-created OneToOneField)
● With the multi-table inheritance, all fields of ImageBaseFrame will still be available also in

ImageSpaceFrame and NispRawFrame
● If we have an ImageBaseFrame instance that is also an ImageSpaceFrame instance, we can get

from ImageBaseFrame object to ImageSpaceFrame object by using the lower-case version of the
model name

from imagedb.models import ImageBaseFrame

obj = ImageBaseFrame.objects.get(pk=2)
obj.imagespaceframe.nisprawframe

<NispRawFrame: NispRawFrame object (2)>

127
Data Management Plan and Data Model Training Data Model

Serializing Django objects

● Django’s serialization framework provides a mechanism for “translating” Django models
into other formats.

● Usually these other formats will be text-based and used for sending Django data over a
wire, but it’s possible for a serializer to handle any format (text-based or not).

● Django supports a number of serialization formats, including XML and JSON.

● The Django serialize function requires, as one of the inputs, a QuerySet
● However, the Django REST framework, external to the Django framework, provides a more

flexible serialization mechanism

from django.core import serializers

serializers.serialize('json',NispRawFrame.objects.filter(observationId=53877,
 filterWheelPosition='Y').order_by('ditherNumber'))

128
Data Management Plan and Data Model Training Data Model

The Django REST serializers

● In particular, the Django REST framework provides a ModelSerializer class which can be
a useful shortcut for creating serializers that deal with model instances and querysets

● See ‘imagedb/serializers.py’ to check some examples

from rest_framework import serializers
from composite_field.rest_framework_support import CompositeFieldSerializer

...

class NispRawFrameSerializer(serializers.ModelSerializer):
 detectors = NispDetectorSerializer(many = True, read_only = True)
 commandedPointing = CompositeFieldSerializer()
 imageType = CompositeFieldSerializer()

 class Meta:
 model = NispRawFrame
 exclude = [f.name for g in NispRawFrame._meta.get_fields()
 if hasattr(g, 'subfields')
 for f in g.subfields.values()]
 depth = 2

129
Data Management Plan and Data Model Training Data Model

The Django REST framework

● We need an Application Programming Interface (API) that let us perform CRUD
operations on the database without directly connecting to the database

● A REST (Representational State Transfer) API provides such operations through HTTP
methods:
– GET, to request to a server a specific dataset
– POST, to create a new data object in the database
– PUT, to update an existing object in the database or create it if it does not exist
– DELETE, to request the removal of a given data object

● Such methods can be applied to a specific set of endpoints (URLs) provided by our API
● The Django REST framework provides software tools to build a REST API on top of our

models

130
Data Management Plan and Data Model Training Data Model

Django REST framework ViewSets

● The actions provided by the ModelViewSet class
are .list(), .retrieve(), .create(), .update(), .partial_update(), and .destroy() of instances of a specific
model we have defined

● The ReadOnlyModelViewSet only provides the 'read-only' actions, .list() and .retrieve()
– In practice it returns a list of instances of a specific model or it retrieves a single instance by its primary key value

● In our orm_example projects, we have few examples in imagedb/views.py

● More advanced filtering capabilities can be added with additional parameters:
https://www.django-rest-framework.org/api-guide/filtering/

from rest_framework import viewsets
from imagedb.serializers import NispRawFrameSerializer

class NispRawFrameViewSet(viewsets.ReadOnlyModelViewSet):
 queryset = NispRawFrame.objects.all()
 serializer_class = NispRawFrameSerializer

131
Data Management Plan and Data Model Training Data Model

URLs

● Once we have defined viewsets on our models, we have to create endpoints (urls) to access those views
● The Django REST framework provides the so called routers, which generate automatically url patterns

based on the views we have defined
● An example is found in imagedb/urls.py

will generate automatically the following url patterns:
/nisprawframes/ : it will return, in json format, all the NispRawFrame
 objects in the database
/nisprawframes/[pk]/ : it will return only the NispRawFrame object with primary key
 pk

from django.conf.urls import url, include
from rest_framework.routers import DefaultRouter

from imagedb import views

router = DefaultRouter()
router.register(r'nisprawframes', views.NispRawFrameViewSet)

urlpatterns = [
 url(r'^', include(router.urls))
]

132
Data Management Plan and Data Model Training Data Model

Starting the Django development server

● In order to test the REST API, you can start the Django server with the following command

● Now with the browser you can open the following link:
http://127.0.0.1:8000/imagedb/nisprawframes/1/

python manage.py runserver

Performing system checks...

System check identified no issues (0 silenced).
October 15, 2018 - 21:30:57
Django version 2.1.1, using settings
'orm_example.settings'
Starting development server at
http://127.0.0.1:8000/
Quit the server with CONTROL-C.

133
Data Management Plan and Data Model Training Data Model

The browsable REST API

134
Data Management Plan and Data Model Training Data Model

More advanced filtering criteria

● In order to use more advanced filtering criteria through the
REST API, rather then just the primary key, in the
orm_example project we have added the django-url-filter (
https://github.com/miki725/django-url-filter)

● With this filter, we can specify filtering condition directly in
the url, e.g. :
http://127.0.0.1:8000/imagedb/nisprawframes/?observationId__in=53877,54349&filterWheelPosition=Y

https://github.com/miki725/django-url-filter

135
Data Management Plan and Data Model Training Data Model

References

● https://www.yworks.com/products/yed
● https://www.lucidchart.com
● https://plantuml.com
● https://www.djangoproject.com
● https://www.youtube.com/watch?v=UI6lqHOVHic
● https://www.uml-diagrams.org
● https://www.guru99.com/uml-diagrams.html
● Blaha, Michael. (2013). UML Database Modeling Workbook
● https://www.djangoproject.com
● https://www.sqlalchemy.org
●

https://www.yworks.com/products/yed
https://www.lucidchart.com/
https://plantuml.com/
https://www.djangoproject.com/
https://www.youtube.com/watch?v=UI6lqHOVHic
https://www.uml-diagrams.org/
https://www.guru99.com/uml-diagrams.html
https://www.djangoproject.com/
https://www.sqlalchemy.org/

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	The FAIR Guiding Principles
	Big Data (2)
	Storage and Archive
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85
	Diapositiva 86
	Diapositiva 87
	Diapositiva 88
	Diapositiva 89
	Diapositiva 90
	Diapositiva 91
	Diapositiva 92
	Diapositiva 93
	Diapositiva 94
	Diapositiva 95
	Diapositiva 96
	Diapositiva 97
	Diapositiva 98
	Diapositiva 99
	Diapositiva 100
	Diapositiva 101
	Diapositiva 102
	Diapositiva 103
	Diapositiva 104
	Diapositiva 105
	Diapositiva 106
	Diapositiva 107
	Diapositiva 108
	Diapositiva 109
	Diapositiva 110
	Diapositiva 111
	Diapositiva 112
	Diapositiva 113
	Diapositiva 114
	Diapositiva 115
	Diapositiva 116
	Diapositiva 117
	Diapositiva 118
	Diapositiva 119
	Diapositiva 120
	Diapositiva 121
	Diapositiva 122
	Diapositiva 123
	Diapositiva 124
	Diapositiva 125
	Diapositiva 126
	Diapositiva 127
	Diapositiva 128
	Diapositiva 129
	Diapositiva 130
	Diapositiva 131
	Diapositiva 132
	Diapositiva 133
	Diapositiva 134
	Diapositiva 135

